
The Prisoner's Dilemma

You and your buddy have been arrested for pirating software.

- >You are both guilty.
- >The police speak to you separately and offer you a deal.
- >If you both independently claim innocence (ie lie) then you both get a 3 year sentence.
- > If you both plead guilty (the truth), then you both get 1 year.
- > If you claim innocence (lie) and your buddy claims quilt (the truth), then you get off free and buddy gets 5 years (and vice versa).
- > Would you plead innocent or quilty?

The Baker's Dilema

- > You buy bread from a baker.
- > The exchange of bread and money takes place at separate spots at the same time.
- > Thus you leave the money at the same time as the baker leaves the bread.
- > What are you going to do? Leave money or not?

The Law of the Commons

- You and the other shepards in your village use common land (called "the commons") for grazing sheep.
- > The commons is being over grazed.
- > Thus everyone is asked to cut grazing in half.
- > It is hard to tell the sheep apart.
- > What will you do?

Payoff Matrix

Column Player

Row Player

	Cooperate	Cooperate Defect	
Cooperate	R=3, R=3 Reward for mutual cooperation	S=0, T=5 Sucker's payoff, and temptation to defect	
Defect	T=5, S=0 Temptation to defect and sucker's payoff	P=1, P=1 Punishment for mutual defection	

NOTE: The payoffs to the row chooser are listed first.

$$R > (T + S) / 2$$

- > Open or closed game?
- > How big a shadow does the future cast?
- > Discount factor, w, between 1 and infinity. The promises of tomorrow are not worth as much as the spoils of today.
- > Future worth = Current worth / w.
- > So what is the best strategy?

What is your objective?

- > to prevent the other from winning? (if I can't win then you won't either)
- > to maximize your gains? (I don't care what you get as long as I get the most I can)
- > to maximize the differential in your gain over his? (I want more than you)
- to maximize the gain of the system?(I can't win if that means you lose)
- > Who is the enemy?
- > Is there an enemy?

Given the choice of:

win - win

win - lose

lose - lose

we would probably agree that win - win is the most desirable.

le: We desire the emergence of cooperative strategies.

Thus, we need a strategy, call it "S", that:

can emerge (S can invade the host, S is a minority)

can thrive (S lives in a heterogeneous society)

can protect itself from invasion (S is the host)

The Computer Tournaments

Round 1:

- > Each entry was paired with each other entry (Round Robin), itself and RANDOM
- > 200 moves
- > 14 entries

Result:

- > TIT for TAT won.
- > T-T simplest and best.
- > Many of the strategies were varients on T-T.

Analysis:

- > T-T is <u>nice</u>. This property distinguishes high scores from low ones.
- > Performance depends on environment.
- > TIT for 2 TATS would have won if entered.
- > Results published.

NICE PROVOCATIVE FORGIVING CLEAR

The Contestants: Round One

Rank	Name	Discipline (if faculty)	Length of Program	Score
1	Anatol Rapoport	Psychology	4	504.5
2	Nicholas Tideman & Paula Chieruzzi	Economics	41.	500.4
3	Rudy Nydegger	Psychology	23	485.5
4	Bernard Grofman	Political Sci.	8	481.9
5	Martin Shubik	Economics	16	480.7
6	William Stein	Mathematics	50	477.8
	& Amnon Rapoport	Psychology		
7	James W. Friedman	Economics	13	473.4
8	Morton Davis	Mathematics	6	471.8
9	James Graaskamp		63	400.7
10	Leslie Downing	Psychology	33	390.6
11	Scott Feld	Sociology	6	327.6
12	Johann Joss	Mathematics	5	304.4
13	Gordon Tullock	Economics	18	30 0.5
14	Name withheld		77	282.2
15	RANDOM		5	276. 3

The Computer Tournaments

Round 2:

> 62 entries

Result:

> TIT for TAT won again.

Analysis:

> Apparently, some people looked at Round 1 and concluded:

Be nice and forgiving (lesson 1)

- > Others concluded:
 - If others are going to be nice and forgiving, take advantage of them (lesson 2)
- > Those who drew lesson 1 suffered under those who drew lesson 2.
- > But lesson 2 codes didn't do very well (mutual punishment).
- > T-T got along well with almost everyone, ie is ROBUST

The Computer Tournaments

Round 3: Simulation of Life

> Growth / death based on scores.

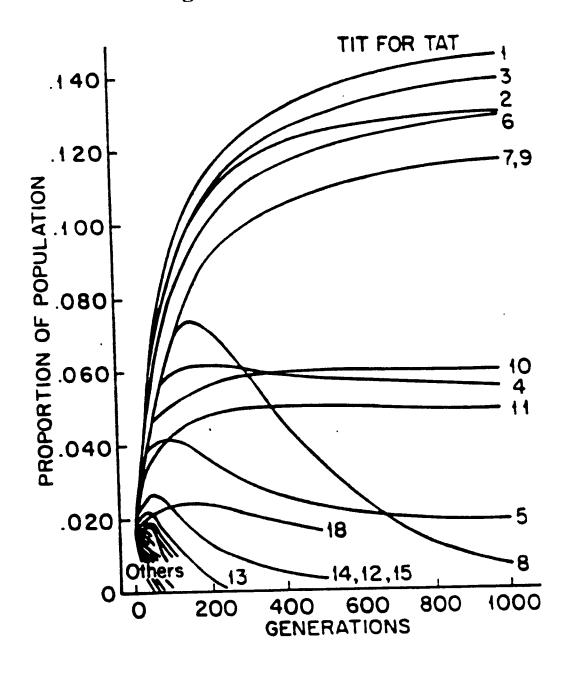
Result:

> T-T wins again.

Analysis:

> T-T wins because:

Niceness prevents it from getting into unnecessary trouble.


Retaliation discourages defection.

Forgiveness helps restore long-term cooperation.

Clarity elicits long-term cooperation.

> All this makes T-T robust.

Simulated Ecological Success of the Decision Rules

Conclusions, etc.

- > T-T has been seen in: Trench Warfare Biological Systems
- > Cooperation can get started by even a small cluster of individuals who are prepared to reciprocate cooperation, even in a world where no one else will cooperate.
- > The players do not need to exchange messages or committments. They do not need words because their deeds speak for themselves.
- > There is no need to assume trust.
- > Altruism is not needed.
- No central authority is needed: cooperation based on reciprocity can be self-policing.