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Abstract

This paper explores the use of Knowledge Based Systems as tools to aid the user with engineering
activities relating to heat exchangers. The areas of heat exchanger selection, design and operation
are addressed. The nature and importance of knowledge base design is investigated. It was found
that the knowledge base design is inextricably linked to the mental models of the user and of the
expert being mimiced, and so, human problem solving strategies are investigated. Prototype -
designs for selection, design and operation have subsequently been built and have proved
successful. The prototypes are discussed.

1. INTRODUCTION

The emergence of practical Expert Systems (ES) in recent years has led to their consideration for
engineering activities. Expert Sysytems entail the combination of data-bases with rules for the
manipulation of the data toform knowledge-bases. Engines are included to make inferences based
on the knowledge. Knowledge-Based Systems (KBS) is perhaps a better term since it more
accurately reflects the fact that most successful implimentations are empowered by the knowledge
contained within the tool, rather than by novel engines that manipulate that Knowledge-Base (KB).
Herein, we look at the nature of ES and KBS to delineate what they are good at doing and what
they are not good at doing. Then, we look at the domain of heat exchangers with a view to
assessing where these emerging tools might be of value for selection, design and operation.

Arguably, we can divide the problem domain up into 3 distinct parts:
1. Selection: given a job to do, which HX type should be used?
2. Design: given a HX type, what are the design specifics?
3. Operation: given an enginecered HX, usually as part of a system, how should it be : -
operated and maintained?
These demarcations are somewhat mutable since selection involves some design activitics, design
considers operational issnes, and so on. There are other activities missed out altogether, such as
process integration, project management, procurement and installation but they lic (mercifully)
outside the scope of this paper. Specifically, we will look at prototype KB tools covering the HX
selection, S&T design and turbine condensor chemistry support. But first, it is necessary to
introduce KBS and user cognitive issucs.

2. THE NATURE OF ES

Traditional numerically based computer codes for engineering are structured on the model:
Data Structures + Algorithms = Programs

The algorithms are invariant procedures for the most part, although some programs involve

50,000+ lines of code containing complex logic. Characteristically, the solution procedure is



intermingled with the domain knowledge within the code. In contrast, Knowledge-based systems
(KBS) are structured on the model:
Knowledge + Inference = Knowledge-Based System

Knowledge is composed of data and the rules that apply to that data. Traditional programs would
have the rules as part of the algorithm whereas modern KBS use an engine that is distinct from
the knowledge-base to pursue the goal specificd by the user. Knowledge, in cssence, is the input
data for the inference engine in the same manner as data structures are for traditional procedural
codes. We illustrate the heirarchy of knowledge forms in Figure 1. In this sense, KBS operate
one or two levels up from data based systems in terms of abstraction, making them one step closer
towards emulating human expertisc and one step farther away from dumb tools. By separating out
the KB from the inferencing engine, it is now possible to build a very flexible tool; the knowledge,
once captured, can be operated on in many ways. One need only declare the data and rules in the
form of a KB; the solution procedure need not be supplied since the inference engine will provide
the problem solving as needed. This approach is simply too attractive to ignore. Let us dig a little
deeper to understand the advantages and disadvantages better.

2.1 Knowledge representation

Knowledge representation in artificial intelligence is firmly based on the concept of an object.
This closcly mirrors the human approach to visualizing the world; we clump things and concepts
so that our active memory can deal with them. The objects we select for representation depend
on the problem to be solved. For instance, it could be the HX type, giving approximately 30 to
50 objects. Defining the objects is an essential part of the problem definition and provides the .
basic information about which solutions can be formulated. The next step is to provide a means
of manipulating the objects in order to formulate a solution.

For simple systems, we can simply use IF-THEN rules. IF-THEN rules have been shown to be
sufficient for human thought modelling and for modelling all mathematical systems [1]. Thus,
theoretically, all problems can be solved this way. It is no wonder, then that symbolics became
the backbone of Al research. However, efficiency may be poor and the knowledge base may not
lend itself easily to representation by IF-THEN rules only. This is especially truc when the rules
are not definite, that is, when the situation is fuzzy’.

It has been observed and is widely recognized in the literature that it is the vast knowledge-base
that exemplifies the expert rather than raw inferencing capability. Take an expert and place him
or her in novel territory and you get decidedly non-expert behaviour. Take a genius and place him
or her in the expert’s territory and you do not get expert behaviour. The knowledge-base
(composed of facts and heuristics) is then very important. The result of this is that the objects
being manipulated (the knowledge base) need to be defined before they can be manipulated (by
the inferencing or procedural engine). But how we define these objects will depend on the mental
model chosen (a point that we will come back to later).

One can envision general structures of nodes (objects) and links between these nodes. These : -
structures are termed semantic nets and can be of arbitrary complexity. No completely general
implementation is commercially available. However, the currently available object based expert
system shells are flexible enough to mect most needs today.

Methods of manipulating the knowledge base to achieve the stated goals are discussed next. This
is inferencing.

2.2 Background on control and search strategies

Although knowledge representation (objects, frames, data bases, rules, etc.) forms the basis of the
expert system, any expert system (humans included) requires a strategy for probiem solving within
the knowledge domain defined by the knowledge representation. Problem solving amounts to little
more than searching, augmented by procedural calculations in most cases. Hence, searching
methodologies form a focal point for most inference engines. It is usual (see [2] for a typical
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Figure 1 Knowledge Forms.

description) to subdivide search methodology into control strategy (providing the overall control)
and the search tactics (providing the implementation details as requested by the control strategy.

The primary control strategies commonly used are forward chaining and backward chaining.
Sometimes, both strategies are used in hybrid engines. Forward chaining involves starting with
the facts and searching forward, using all possible rules, to generate all conclusions that can be
derived from these facts. Backward chaining involves starting with an hypothesis and working
backwards through the rules to discover if the hypothesis can be substantiated. One strategy is
neither better nor worse than the other in general. Backward chaining is best suited to those
problems that have a smallish set of possible hypotheses, such as when the objective is to confirm
a hypothesis or perform a diagnosis. On the other hand, forward chaining lends itself to data
driven applications like real-time events. Both strategies can be augmented by first firing rules
which prune the search tree, thus reducing the search space.

Search tactics refer to the details of the search through the set of rules. Given a network of rules,
say in an inverted tree type structure that is 4 layers deep (trunk, branches, twigs and leaves),
possible search paths include the following. A breadth-first approach searches all branches first
before any twigs or leaves, then searches all twigs, and lastly all leaves). The depth-first approach
picks a branch, searches a twig, leaf by leaf, then searches the next twig, and so on until that
branch is exhausted, moves to the next branch, ete. Heuristic searches usc rules of thumb to look
in likely spots first and to prune the search space. Hybrids of these approaches are, of course,
also possible.

One can see, then, that given a set of IF-THEN rules that represent knowledge and given a goal
plus initial facts, the solution can be found by invoking an inference engine that makes deductions
without being given an explicit solution procedure for the problem at hand. This scheme is termed
‘declarative’ as opposed to the ‘procedural’ scheme traditionally used in engineering.

Any real knowledge representation involves both symbolic and numeric processing. Enginecring



applications are typically numerically intensive. Hybrid types can be achieved by imbedding or
by blackboard techniques for distributed processing and a2 means of marrying generically different
approaches and utilizing otherwise incompatible paradigms or knowledge representations.

In short, KBS are distinguished from traditional programming by:

The use of symbolics

The ability to adapt to changing goals (declarative)

the separation of the inference engine from the data (KB)

the use of search techniques, including pruning
The lure of AI stems directly from these characteristics; we have the kernal of the elements
needed for a thinking machine.

On the plus side, KBS are good for problems that are predominately symbolic in nature, have
variable goals and have an unbounded solution space. In addition, because Al techniques are
different from the traditional techniques, they involve generically disparate solution schemes and
so can be used to verify and validate existing schemes. This has significant safety implications.
Al based schcmes arc naturally adaptable to explaining why a conclusion has been reached. The
many successful expert system shells incorporate explanation facilities, forward and backward
chaining, and extensive development tools are standard repitoire. Hence, these tools provide
excellent platforms for knowledge acquisition or domain exploration and rapid prototyping.

But all these benefits come at a price: speed and resources. Because the inference engine must
formulate a game plan ‘on the fly’ and invariably follow many dead ends before a conclusion is
reached, performance is slow when compared to the procedural paradigm. Further, these tools.
are not optimized to execute numeric calculations. There is a huge memory and disk space
overhead for the inference engine and the associated environment. Consequently, such systems
are not suited to real-time applications and are not well suited for engineering applications as we
shall see. It is obvious, but often overlooked, that some mental activities like instinct cannot be
captured by rules. Hence we cannot expect to use KBS for activities that involve instinct. If we
cannot formulate our thoughts, we can hardly expect the machine to be able to emulate us. Al has
been oversold, or more accurately, overbought. Vendors have emphasized the positives, true. But
buyers tend to overlook the negatives, wanting to believe that here lies the answer to their
problems. The hard reality is that, as before, the accuracy of the answer depends on the input
data; all relevant knowledge must be represented in the KB. It turns out that elucitating the KB
is the primary task; implimenting it in a system is usually straightforward.

As we shall see, even though there are limitations with KBS, they have their place and can be quite
effective when used appropriately as compliments to traditional engineering tools.

Further distinction can be made in solution paradigms: individual problem solving vs. group
problem solving. It has already been pointed out that the search is the primary strategy for
problem solving and thus provides the focal point for inference engines. This applies to the
individual. However, this does not emulate the primary mode of problem solving on a group level.
We note that real problems solved on a group level are complex and diverse. The knowledge-
bases are necessarily system or component specific and it is unlikely that a general knowledge-base
can ever be conceived. This leads to the paradigm of message passing via a blackboard or some
other mail handling system as a means of allowing disparate agents (models or codes or humans,
etc.) to interact. Knowledge-base design is, in this case, more about the design of the blackboard -
the format and content of the messages being processed. It is at this level that one is concerned
about how the operator or engineer interacts with the system being controlled. The user’s mental
model is thus important for group problem solving. Recall, too, that since the mental model
defines the opjects in the KB, the user’s mental model is important for individual problem solving
as well.

3. THE USER

Past work on Expert System based aids has been machine-centred. This is a term used by Bernard
[3] to describe the overall design philosophy of building tools that put the machine in control, that




is, the computer program tells the user what to do and when to do it. Natural scepticism coupled
with the clearly limited expertise exhibited by Expert Systems ensured faiture for attempts at
building machine-centred aids. Contrast this to the human-centred approach wherein the user is
the primary source of intelligence and is in control. In the human-centred approach, the user
employs the computer programs as tools, as powerful extensions of the user. The computer may
monitor and annunciate but it is the user who pilots the operation, using the tools when necessary
and as necessary. The paradigm shift is profound. Bernard notes that the machine-centred
approach is now considered inappropriate.

The mental model of the designer or engineer as developed in Rasmussen’s book [4] is one that
is based on functional decomposition. The engineer poses: How does the plant work? What is
broken? What measurements must be taken? What is the functional decomposition of the plant?
How do the parts interact? How can onc simulatc it? This ‘mechanology’ led to alarm based
annunciation, control room displays and controls grouped by system (functional decomposition),
sensoritus, and information glut without enhanced knowledge. The view of the plant taken was
that of the design engineer - this is how and why it works - here are all the details, etc.
Ergonomics was commonplace but limited to ‘knobology’. Make the knob bigger, use a red light
here, etc. This kind of thinking leads to products like the VCR - machines with attractive lines,
buttons that fecl’ right, on-screen programming and 64 button remote controls - full featured
functionality from the comfort of your armchair. And unusable for anyone except a technoid!
Problem solving strategics here relies on a deeper than average understanding and use of specific
knowledge. This is appropriate for design activities but not for selection and operation activities.

The non-expert selection user or the plant operator have different mental models than the design
engineer. The operator’s mental model of the plant is closer to that of a technician - the plant
is a collection of many systems, most of which are treated with generic algorithms for fault
diagnosis and treatment of event symptoms, irrespective of the system in question. The non-expert
involved in a sclection exercise also behaves like a techmician, employing general strategies
irrespective of the system in question (elimination of inappropriate alternatives and evaluation of
the remaining alternatives using common and measurable attributes). Rasmussen’s figure
(reproduced in part in Figure 2) illustrates this generic algorithm. The generic algorithm for
problem solving is to observe and identify the state of the situation, interpret, evaluate, plan
actions and exccute the actions. Rasmussen notes that shortcuts can be taken at any stage. In
fact, most of what we do involves shortcuts to some degree. ALL problem solving is covered by
this figure but the technician often employs strategies and tactics that do not rely heavily on a
detailed knowledge of system and component behaviour. That is, short cuts to Rasmussen’s full
solution path are taken. This is a form of shallow reasoning and is good most of the time. This
is not to say that the operator does not have a detailed knowledge of the systems and components.
Hec or she indeed does. It is simply that the problem solving scheme is not as system dependent
as for the engineer.

Recalling that the KB definition is fundamental to the whole exercise and that the KB is defined
around the objects of the problem domain, and having just learned that different user types
employ different mental models (hence different fundamental objects) we sometimes face a
delemma: the physical problem domain needs to be functionally decomposed along the lines of the
physical or engineer’s mental model since that’s how it works, whereas, this is sometimes an
inappropriate model for the user. The issue is not a trivial one and, as such, deserves cart:ful
consideration in the design of support systems. This mental model mismatch plus a machine-
centred bias are arguably the leading causes of the failure of artificial intelligence based support
systems.

4. HEAT EXCHANGER SELECTION

The first example of the use of KBS for HXs is the task of selection. The ta.sk of §clecting is to
a large extent one of making choices from a set of alternatives. Desi.gn conmdc::atlons do play a
significant part in selection since frequent forays into the design details are rcqum;:d even for the
task of eliminating alternatives that are not feasible for the task at hand: Choosqlg the correct
heat exchanger (HX) for a given application is such a situation. The typical user is an engineer



Figure 2 Rasmussen’s Problem Solving Schema (Simplified).

who is not an expert in the HX field. The experts here are design engineers whose knowledge we
hope to have captured in the HX selection tool. These experts tend to use first principles in their
thought processes. To see how we might best organize our KB, let us look first at how a design
engineer might approach the task of selection.

On the most fundamental level, the mass, energy and momentum equations can be written for each
phase of each stream as a function of space and time, coupled with their respective correlations
and equations of state. But this large equation set cannot usually be solved even if all the
constitutive relations were known. This level of detail is reserved for fundamental R&D where
experimental and theoretical work are compared. The results of such scrutiny are practical
correlations that are embodied into design and analysis codes. These practical tools permit the
design engineer to scope out a number of designs in some detail. But this is not sufficient for
good design for at least two reasons:

1. detailed calculations of the heat transfer, fluid mechanics and mechanical design are.

usually quite time consuming;

2. there are many other aspects to consider that affect the design, such as chemistry,

fouling, past expericnces, cost, reliability, service, etc.
Clearly, the expert cannot adopt a strategy which is entirely based on first principles, that is,
design the heat exchanger starting from a clean sheet of paper; the task would be overwhelming
in the intellect, time and effort required. The expert must be more pragmatic.

Heat exchanger design is now in a mature state; many viable designs exist covering the spectrum
of applications. Designs have evolved around the flat plate (efficient in heat transfer, cheap to
build, but inherently weak structurally) and the tube (strong mechanically at the expense of heat
transfer and cost). Given the large number of variables in the design (materials, fabrication
techniques, geometric details) there are a vast number of possible designs for heat exchangers.
Time has eliminated most of the possibilities, leaving a manageable number (about 50) major
classes of heat exchanger types that have proved successful in practice. Thc expert finds that the
workable strategy is to first select a few candidates from these classes and to then refine the




design using past experience to guide the design process. This is the heuristic approach; rules of
thumb arc used to guide the scarch, 1o narrow down the choices. Hence, the expert invokes a
meta-knowledge, that is, a knowledge about his knowledge. The momentum equation need not be
solved in detail for the expert to make some comment about pressure drop and how that affects
selection. The knowledge captured for selection, therefore, has little to do, directly, with first
principles. The primary focus must be the heuristics and supporting numerics.

In parallel with the maturing of heat exchanger design, the approach used by the experts has also
matured and stabilized in overall structure (although improvements in design and analysis
techniques mean that the actual designs are far from static). This has greatly aided the knowledge
acquisition. There is an overall control strategy for HX selection that has emerged in the
literature [5-7]. As in turns out, the strategy is highly procedural (meaning that the path to the
solution is known) and invariant (meaning that the strategy does not change for different case
studies). This finding i i by roj vel nt. It means that the HX
selection process can be coded using standard procedural languages (BASIC, FORTRAN,
PASCAL, C, etc.). If the strategy had been mainly declarative (meaning that the rules were
known, ic declared, but the solution path was not known in advance), then Al techniques would
have had to be employed. The Al approach could still be used but it would represent unnecessary
overhead and reduce the speed of finding the solution considerably. A commercial shell was used
at the beginning of the project but it was quickly discarded as unwieldy and unnecessary. A
prototype has been written directly in ‘C.

As discussed in [8], the solution strategy centres around the elimination of HX’s that cannot be
used for one reason or another, and the ranking of those that are left mainly on the basis of cost.
Thus the first major task of the code will be to perform the exclusion. Exclusion rules could be
applied sequentially to each HX in an exhaustive search fashion. A strategy is not needed for rule
firing (inferencing) since an exhaustive search is being done. These rules utilize user supplied
data, data from the HX data base, data from the fluid property data base, and derived data.

Process conditions form a major aspect used to select heat exchangers; consideration of the
process conditions leads to most of the rules and constraints. For example, a typical statement
from an expert is: if the pressure exceeds 20 bar then you cannot use a plate and frame HX
because the gaskets cannot handle the pressure. It is convenient and efficient to collect all such
values as 20 bar into a data base and loop through all HX’s. This permits easy editing, enhances
modularity, allows dynamic loading and unloading of data, and encourages generalization. The
inference engine will use this generic rule to eliminate from consideration those HX’s that cannot
handle the pressures of the process streams of the application in question. In a similar fashion,
generic rules have been formulated to exclude HX types based on: maximum heat duty; maximum
pressure; maximum temperature; minimum temperature; number of streams; temperature cross;
process attributes; stream attributes; fluid-HX incompatibilitics; maximum heat transfer area;
minimum heat transfer area; and special rules for HX’s that'require atmospheric pressure air or
vapour streams or are subject to temperature approach restrictions.

After applying this set of exclusion rules, the inference engine is left with a considerably
(hopefully) smaller set of possible HX’s. The task at hand is now one of ranking this remaining
set. The chosen method is currently cost based but development continues.

The prototype, constructed as an aid to knowledge acquisition and a precursor to the final product,
effectively gives the topology of the knowledge base a tangible form. The user and the expert have
a focus for discussion and the knowledge engineer has a tool for knowledge elucidation. The
prototype performs very well, meeting or exceeding all expectations in ease of construction, ease
of use, speed, and accuracy in emulating the human expert. The consensus among those
interviewed was that the user should not be constrained by the program; rather, he or she should
be free to move freely about the code segments. The user should control the code, not the other
way around.

In short, the task of HX selection involves selecting from a finite and pre-enumerated list of
alternatives (hence the search for a solution can be exhaustive), the goal is fixed and the solution
path is known (ie fixed invarient procedures), the solution path is straightforward, the solution



depends mostly on the knowledge base that is predominantly numeric, and the appropriate mental
model is more akin to the operator than it is to the engineer. Compare this problem to the KBS
based on the ES paradigm and we see that the match is not good at all. Traditional programming
techniques can be used and an inference engine is not required. None of the features offered by
KBS are needed except for the knowledge base itself. As mentioned previously, the user adopts
the operator mental model for HX selection. Thus, the KB has been cast in terms of objects that
the non-expert can associate with and the rules are easily understood heuristics supplied by the
expert. The difficulty in building an HX selection tool lies in the knowledge acquisition task
because of the disparity between the mental models of the user and the expert.

5. SHELL AND TUBE HEAT EXCHANGER PREDESIGN

The objective of the second exercise is to achieve a rough design for the S&T HX. But, as an
objective, this is too vague. The design exercise is more specifically the selection of a number of
design options that are needed as input into S&T design codes. The items to select, ic. the
‘objects’, are:
stream allocation (hot stream to the tube side or shell side?)
front head (A, B, C, N or D type?)
shell (E, F, G, H, J, K or X type?)
rear head
fixed tubesheet (L, M or N type?)
U tube (U type?)
floating tubesheet (P, S, T or W type?)
number of tube passes (odd or even?)
triangular or square tube pitch?
shell orientation (vertical or horizontal?)
expansion bellows (yes or no?)
There are the obvious groupings, front head, shell, rear head, etc., and only one member from
each group can be selected at any one time (ie., the front head is A or B or C or ...). Further, the
choice of front head is not independent of the rear head, etc.

There are a number of subgoals. The number of possible configurations is quite large,
approaching:

2x5x7x4x2x2x2x2 = 4480.
Thus, an exhaustive secarch though all possible design configurations is not advised; nor is it the
route followed by the human expert. The alternative approach is to apply heuristics (rules of
thumb) to select the key design items, thus drastically narrowing down the search space.

An attempt was made to utilize the rules documented in [9]. Initially it was thought that Al
techniques would be required since the logic seemed quite convoluted. However, with the use of
an influence diagram (illustrated in part in figure 3), it became clear that, once again, a fixed
procedure could be used. Consequently, a simple scorecard approach was used.

From the influence diagram, we can easily detect those items that could be selected based on the
process input only, independent of the other design items. Stream allocation is one such item.
In addition, all other design items depended on the stream allocation. Obviously, this should be
the first item on the agenda. Once that is decided, the temperature stress situation guides the
bellows selection. The ground work is now prepared for the choice of tubesheet (fixed, U tube
or floating). The rest of the decisions follow readily. Thus the S&T design is modelled as a linear
(non-iterative) application of independent modules: allocate streams, decide on bellows, etc. Since
that the procedure has been clarified, there is no need for an inference engine. It is possible that
future study will reveal that the design procedure is not as invariant as just depicted. For example,
one application might require that stream allocation be left open until other aspects have been
investigated. If that proves to be the case, then the firing of these independent moduies can be
retained, but controlled by a true declarative based inference engine that provides the overall
strategy. There is no loss, then, in experimenting with the procedural approach.

These design items were found to depend on the following 7 process items to a greater or lesser



extent:

pressure

hazards

fouling

stream quality

stress due to temperature differences
cleaning requirements

interstream mixing

Other items, such as pressure drop and volumetric flow rate, also influence the decisions but these
were not pursued at present.

As an example of some rules used in the pre-design task, consider the first task: allocation of the'
streams to tube side or shell side. Generally, high pressure streams should be placed on the tube
side since shell side wall thicknesses wonld be prohibitively expensive if high pressure flaids were -
placed on the shell side. Hazardous fluids are likewise more easily accommodated on the tube:
side. Fluids that cause wall fouling (and thus heat transfer degradation) should be placed to
facilitate mechanical cleaning, that is, on the tube side. Immediately, we sec conflicting:
requirements: where should we place the streams if one is high pressure and the other is
hazardous? The experts tell us that priority should be given to the high pressure rule, then the
hazard rule and lastly the fouling rule. This is justified since there are alternative strategies for
dealing with fouling fluids and the cost of high pressure shelis far outweighs the cost of additional
measures for dealing with hazardous fluids. We assign the rule weights to be 45%, 35% and 20%.

Next we must translate the stream pressures into some score (say on a scale of 0-100) representing
the relative need to put that stream on the tube side. The same is done for hazards and fouling
and a simple weighted sum is calculated for both the hot and cold streams. The stream with the
highest score is allocated to the tube side. This process seems somewhat arbitrary and it is.
However, a more elaborate procedure would not improve the accuracy because the limitation is
with the expert knowledge itself. No hard and fast rules exist for stream allocation; the rules are



somewhat fuzzy.

The pre-design task as illustrated above is similar to the HX sclection task; for the pre-design task,
choices are made on design specifics, thereby narrowing down the number of possible design
options and making the whole design process more efficient. In essence, one can think of the
whole design exercise as a constraining exercise that takes the designer from a huge number of
possibilities to one specific design. The whole design process is one that is virtually unbounded,
has variable goals, requires intuition and is a very subtle process. This is a good match to the
characteristics of the KBS except for the presence of intuition. However, as illustrated by the pre-
design solution procedure, it is necessary to first capture the expertise in the form of a KB before
an inference engine can be employed. But the very exercise of capturing the KB also exposes the
solution procedure (that had seemed so ethereal before) to be, yet again, a simple procedure.
Once more we see that an inference engine is not required; capturing the knowledge in the KB is
the key.

The traditional practise is to supply good analysis tools. In the end, it is the design engineer who
must remain in control of the design decisions make. What we can offer here is a tool to do a
rough pre-design to aid in the use of the detailed tools. The mental model of the user is the
engineer’s mental model which makes the task of knowledge-base design that much easier.

6. OPERATION

The third example is in the area of operations. To respond to real events in a complex plant,
analysis is required. Much of the control is automatic but a significant role is played by the
operators who must reason about the situation at hand. The right hand side of Figure 4 illustrates
the roles played by the human operator with respect to the plant and plant control (as portrayed
in more detail by [10]). It is not just a question of being fast. Rather, bounding the solution time
is the issue. Can a sufficiently good solution be found within the time required? The goal here
is to ‘sufficify’ rather than ‘optimize’. The successful operator or control system reaches the
appropriate conclusion and implements it before the real system (the plant) does. Approximate
solutions can be refined later. Here again, the heuristics are not well delineated.

In complex plants, the sub-systems of distributed architectures are typically hierarchically
organized. Compared to higher level sub-systems, lower level sub-systems respond more quickly
to more basic inputs in a more procedural manner. An example would be a standard proportional-
integral-differential (PID) controller. Typically data flows upward through the hierarchy and at
cach level is transformed in some way. Higher level systems need not be informed about un-
necessary information. This is information hiding. Higher level subsystems (the aperator
constitutes the highest level) involve more highly abstracted data which requires higher levels of
cognitive analysis and which, by their very nature, are performed more slowly than lower level
responses. This is temporal abstraction. Figure 5 illustrates the functional and temporal
abstraction typically found in a complex plant.

The plant is organized along the same hierarchial lines as the design engineer’s mental model.
That organization expects the human to provide the top level knowledge based control. The
operator, however, spends much of the time at the rule based and skill based levels. Figure 4
illustrates this point of mental model mismatch as previously discussed. Next we shall see that it
is possible to surmount this mismatch problem through proper design of the support tool.

6.1 Generic User Support System Design

From our study of the works of others and from our own investigations, we have found that there
are some general principles that apply to the design of operational sapport tools. For the most
part, these stem directly from traditional engineering design practices. Customary design features
include flexibility, modularity, incremental growth capability, and independence of modules from
the control structures. We follow these features as much as possible. However, the nature of the
plant environment guides the design and development of useful operator aids. Next we discuss
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Figure 4 Various Mental and Physical Models.

how the characteristics outlined above manifest themselves in the GUS design in particular.

What single aspect is the most important to capture and hence most influences the design of an
operator aid? The distributed architecture stands out as central since this dictates the whole
character of the station. It IS, in fact, the physical station. Diverse and disparate knowledge bases
and asynchronous activity naturally follow. The plant has been ENGINEERED from the ground
up and any aid must acknowledge this fact. This complex system must be controlled and this
implies measured data, system knowledge and agents that act in this control function. The
distributed and diverse nature of the plant also implies that the controlling agents be diverse. No
one aid can ever hope to encompass the needs of the operator. Rather, many small aids need to
be developed in a coordinated manner following the natural organization of the physical plant and
activities of the operational staff. But as soon as one prescribes separate agents in the design of
the operator aid, artificial divisional boundaries have been created and these boundaries must be
bridged by message passing of some form. This, in turn, implies 2 message format and a
communication medium. Since the aids may be as physically distributed as the plant, some form-
of local area network is indicated. There will inevitably be copious quantities of data and it is
usually prudent to include a data storage agent which can act as a message coordinator or post
office. Such an agent is called a blackboard or, perhaps more correctly, a postboard. By a
judicious choice of agents and their duties, message passing can be minimized. Indeed, message
passing has proven to be a bottleneck in the past, leading to a design principle of making the
agents as proactive, persisient and perscvering as possible, meaning that they act with the least
instructions, will continue to act until told to stop (or their duties are complete), and will try hard
to complete assigned tasks even in the face of incomplete or inconsistent data.

The individual aids, operating in parallel, are of considerable utility by themselves but the trne
power of the paradigm comes when the various individual aids cooperate in problem solving
(concurrent engineering).

We note that this is a conceptual organization. Implementation could vary from single processot,
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single tasking to multiprocessor, multitasking. The implementation could be on one machine or
distributed over many machines (tightly or looscly coupled).

As mentioned, the plant has been engineered and now it must be operated; but the mental models
in the two activities are different, leading to a dilemma for the designer of operator aids. The
basis for the plant (and plant models) are different from that of the operator. Interaction with
the operator must be on the operator’s terms. To make the operator aid more understandable to
the user, the aid is developed along anthropomorphic lines of manager, supervisor and technician.
Further, the information presented to the user must be consistent with the decision making process
of the user. For instance, inevitably, the user is faced with making a choice:
‘Of the possible problems facing me, which is the one that I should pursue now?’

This implies pre-enumeration and recognition of this feature simplifies implimentation
enormously.

Discussion on the obvious plant characteristic of real-time performance has been postponed untif
now since, as important a characteristic as it is, it does not play a central role in operator aid
design at the level that it is being discussed herein.

Any operator aid of value must contain knowledge of the plant that is up to date and it must
reason about that knowledge at an appropriate pace. Thus, there are two time related aspects of
a real-time aid. Our solution here is to functionally and temporally abstract the design so that
specialized agents can handle the time critical events like data acquisition, filtering, trending, etc.
leaving the interpretation and analysis of the data to agents on a higher level. This is precisely
how real-time reasoning is handled in the physical plant. Reasoning heuristics provide the
methodology for dealing with the diverse and sometimes conflicting implications of plant data and
alarms. Real-time for an operator aid means that the aid must be able to provide aid at the
human’s pace, not the plant’s pace. This is so because the plant has been enginecred to be so.

A real-time system is one that reaches its conclusion before the real system does. Can the aid



keep up? We need a strategy to cope and one possible strategy is to provide a fast but
approximate solulion with subsequent refinement later if possible. This is somewhat like the
navigational technique of establishing an approximate heading early on and correcting en route.

Reasoning in real-time about real-time data is in its infancy. No one has yet developed truly real-
time inferencing and current expert systems are limited to treating time evolution as a series of
finite states. Consequently, current operator aid designs should concern themselves with aiding
the operator in making real-time decisions by providing the right information at the right time
and place in a manner that integrates well with the thought processes of the user. However,
nothing in our system precludes the use of operator heuristics (once they are uncovered).

The ideal environment would include a communication highway (like cthernet) to allow peer to
peer interaction, involve distributed processing, permit short circuit heuristics (as per Rasmussen),
have no implied or enforced control structure (orthogonal to the control plane) and permit parallel
and concurrent problem solving. Figure 6 illustrates an implementation that has the required
generality and flexibility. No specific control structure is implied; it is simply a fast, inexpensive
message passing medium that is available today. Note that incoming plant data is broadcast to all
agents but the primary direct users of the plant data are the data acquisition agents and the
blackboard. All agents are free to interact with other agents. (the blackboard and the data
acquisition agents are just specific instances of agents).

6.2 A Specific Implementation: OPUS

McMaster University is developing an advisor on turbine condenser tube leaks and reactor
derating due to secondary side chemistry problems. Research on this project, has been dubbed the
Operator / Uscr Support Project (OPUS). QOne of the project’s goals is to demonstrate the utility
of the anthropomorphic approach of applying the blackboard paradigm partitioned along the lines
of manager - supervisor - technician, allowing symbolic - numeric coupling with the inherent
efficiency of asynchronous operation in real-time.

To date, a procedural code has been developed to provide a timing benchmark and to validate the
logic. A PC-based multitasking blackboard prototype has been developed, tested and benchmarked
for a toy problem [11]. A PC-based blackboard version of the central sampling advisor is
currently in beta-testing. To explore the migration of the aid to a distributed architecture, a LAN
based on ethernet and TCP/IP between a SUN Sparc Station and 3 486 PC’s has been installed
at McMaster and a socket based message passing library over the LAN has been established for
UNIX-UNIX communication. PC-PC and UNIX-PC socket libraries are under development.
Interaction with Pt. Lepreau continues. As has been found in many other knowledge based tool
development, the biggest bottleneck is discovering the expert’s knowledge and organizing that
knowledge in a coherent manner. Plant operators do not have a lot of free time to ruminate for
the knowledge engineer’s benefit and the process of turning inherent expertise into explicit
heuristics is not trivial.

The OPUS system is depicted in Figure 7. Note that the structure of the aid follows the generic
principles outlined in this paper. Currently it is not ticd dircctly into any plant data but it could
easily be linked to Pt. Lepreau’s GATEWAY LAN giving access to existing Chemistry Monitoring
System data.

Work has begun on the exploration of the role of an ES as a compiementary tool to the corrent
OPUS tool. The rules as built into OPUS have been duplicated as far as possible using CLIPS as
the ES shell. Although it is not yet linked to OPUS, it is envisioned that a log file generated by
OPUS will serve as input to the ES. The user (and perhaps the regulatory agency) will then be
able to review the event history and perform two very important tasks:

1. Ask why.

2. Verify the OPUS logic using a generically different paradigm.
Finally, we have justification for the use of an inference engine for HX related activities.



Ethemet

Pigure 6 A Generic and Idealized Systemn.

7. CONCLUSIONS

In conclusion, it has been found that the design of KBS aids for HXs follows quite directly from
a study of the physical situation and the human experts and users involved, There appears to be
nothing inherently difficult in implementing the tools once the knowledge format is cast. The
difficult part is thc knowlcdge cngincering: the experts have limited time to impart their
knowledge to the knowledge engineers and even if adequate time were allocated, the expertise
often has to be ‘discovered’. These are challenges however, not reasons to default to the status
quo. Even if no aid were ever to be implemented, the knowledge discovery would justify all the
effort.
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