ICHMT 2™ [nternational Forum on

EXPERT SYSTEMS AND COMPUTE
SIMULATION IN ENERGY ENGINE];}LING
University of Erlangen, 17-20 March, 1992

1.1

ENGINEERING PROBLEM SOLVING WITH KNOWLEDGE-BASED SYSTEMS

WM. J. GARLAND
Department of Engineering Physics

W. F. S. POEHLMAN
Department of Computer Science and Systems

McMaster Univ.
Hamilton, Ontario, CANADA
L85 4M

ABSTRACT

This paper advocates that the nature of engineering problem
solving is distinct enough that special consideration should be
given to blending the new technologies of expert systems to the
more traditional engineering technologies. The nature of both
technologies are reviewed and some noteworthy conclusions are
drawn. Two distinct engineering tasks are investigated by
delineating their knowledge base structures and their solution
methodologies. It was found that advanced expert system
inferencing techniques are less useful in advancing the state of
the art in engineering problem solving than caref ully crafting the
knowledge base structures.

INTRODUCTION

Most expert systems employ inference engines that are based on
some variation of forward or backward chaining on IF-THEN
rules; the ‘search’ is the key. The assumption is that this is a
reasonable facsimilc of how an individual problem solves. On the
other hand, emulation of group problem solving is attempted
through the Blackboard model. The paradigm there is that of
parallel processing by specialized experts. Information is shared
DURING the parallel processing. BRut do these models apply to
the process engineer? What is the nature of problems faced bya
process engineer and what strategies are appropriate? Are IF-
THEN rules the hub of the domain expertise? Is the ‘search’ a
key element in the problem solving process? How can group
problem solving done? Herein, these issues are addressed and
some insights are noted.

To illustrate some of the above we will consider:
1. The Selection of Heat Exchangers as an example of
individual problem solving (focused on searching);
2. A Central Sampling Advisor for Nuclear Power
Stations as an example of a more complex situation that
benefits from a group problem solving approach.

BACKGROUND

Knowledge representation in artificial intelligence is firmly
based on the concept of an object. This closely mirrors the
human approach to visualizing the world; we clump things and
concepts so that our active memory can deal with them. Our
active memory can only handle four to seven items at a time.
Hence, clumping is essential. Having proposed an object, we
need to name it, set its attributes or describe it, put it into
context with everything else, show how it interacts with other
objects and put limits on the object. These activities are termed:
NAMING, DESCRIBING, ORGANIZING, RELATING, and
CONSTRAINING, naturally enough [PAR88). NAMING simply
puts one or more labels on the object. DESCRIBING provides a
data base for information about that object. The common syntax
isObject-Attribute- Value (O-A-V), forexample: (car-wheels-4)
assigns a value of 4 to the attribute, wheels, of the object. car.

ORGANIZING provides a genealogy, taxonomy or classification
scheme for the objects, such as the family tree. It is generally a
static structure during the problem solution phase. RELATING
focuses on the dynamic interaction with other objects. The way
in which objects interact during the solution of a problem will
change as the solution proceeds. For instance, deciding which
car tn buy entails a change in the relation between you (one
object) and the set of all objects called cars. The
ORGANIZATION of the cars in a classification tree has
remained static, however, CONSTRAINING limits objects,
usually through the use of rules.

The objects we select for representation depend on the problem
to be solved. For the case of heat exchanger selection, discussed
later, this gives approximately 30 to 50 objects. Defining the
objects is an essential part of the problem definition and provides
the basic information about which solutions can be formulated.
The next step is to provide 2 means of manipulating the objects
in order to formulate a solution.

For simple systems, we can simply use IF-THEN rules. IF-
THEN rules have been shown to be sufficient for human thought
modelling and for modelling all mathematical systems [PAR88].
Thus, theoretically, all problems can be solved this way,
However, efficiency may be poor and the knowledge base may
not lend itself easily to representation by [F-THEN rules only.

One can envision general structures of nodes (objects) and links
between these nodes. These structures are termed semantic nets
and can be of arbitrary complexity. No completely general
implementation is commercially available. However, the
currently available object based expert system shells are quite
flexible.

Any real knowledge representation involves both symbolic and
numeric processing. Hybrid types can be achieved by embedding
or by blackboard techniques for distributed processing and a
means of marrying generically different approaches and utilizing
otherwise incompatible paradigms or knowledge representations.

Before discussing how to best represent typical knowledge bases
in engineering applications, methods of manipulating the
knowledge base to achieve the stated goals are discussed This is
known as inferencing. '

Although knowledge representation (objects, frames, data bases,
rules, etc.) forms the basis of the expert system, any expert
system (humans included) requires a strategy for problem solving
within the knowledge domain defined by the knowledge
representation. Problem solving amounts to little more than
searching. augmented by procedural calculations in most cases.
Hence, searching methodologies form a focal point for most

inference engines.
description) to subdivide search methodology into control
strategy (providing the overall control) and the search tactics
(providing the implementation details as requested by the control
strategy).

The primary control strategies commonly used are forward
chaining and backward chaining. Sometimes, both strategies are
used in hybrid engines. Forward chaining involves starting with
the facts and searching forward, using all possible rules, to
generate all conclusions that can be derived from these facts.
Backward chaining involves starting with an hypothesis and
working backwards through the rules to discover if the
hypothesis can be substantiated. One strategy is neither better
nor worse than the other in general. Backward chaining is best
suited to those problems that have a smallish set of possible
hypotheses.

Search tactics refer to the details of the search through the set of
rules. Given a network of rules, say in an inverted tree type
structure that is 4 layers deep (trunk, branches, twigs and leaves),
possible search paths include the following. A breadth-first
approach searches all branches first before any twigs or leaves,
then searches all twigs, and lastly all leaves). The depth-first
approach picks a branch, searches a twig, leaf by leaf, then
searches the next twig, and so on until that branch is exhausted,
moves to the next branch, etc. Heuristic searches use rules of
thumb to look in likely spots first. Hybrids of these approaches
are, of course, also possible.

With this background, we now look at two domains that fall
within the mandate of engineering.

HEAT EXCHANGER SELECTION
The first example is the task of selection. The task of designing
is to a large extent one of making choices from a set of
alternatives. Choosing the correct heat exchanger (HX) for a
given application is such a situation. The experts here are
engineers and, hence, tend to use first principles in their thought
processes. On the most fundamental level, the mass, energy and
momentum equations can be written for each phase of each
stream as a function of space and time, coupled with their
respective correlations and equations of state. But this large
equation set cannot usually be solved even if all the constitutive
relations were known. This level of detail is reserved for
fundamental R&D where experimental and theoretical work are
compared. The results of such scrutiny are practical correlations
that are embodied into design and analysis codes. These practical
tools permit the design engineer to scope out a number of designs
in some detail. But this is not sufficient for good design for at
least two reasons:

1. detailed calculations of the heat transfer, fluid

mechanics and mechanical design are usually quite time

consuming;

2. there are many other aspects to consider that affect the

design, such as chemistry, fouling, past experiences, cost,

reliability, service, etc.
Clearly, the designer cannot adopt a strategy which is entirely
based on first principles, that is, design the heat exchanger
starting from a clean sheet of paper; the task would be
overwhelming in the intellect, time and effort required. The
designer must be more pragmatic.

Heat exchanger design is now in a mature state; many viable
designs exist covering the spectrum of applications. Designs have
evolved around the flat plate (efficient in heat transfer, cheap to
build, but inherently weak structurally) and the tube (strong

It is usual (see {WOLS87] for a lypicall

1-1-2

mechanically at the expense of heat transfer and cost). Given the
large number of variables in the-design (materials, fabricat.ion
techniques, geometric details) there are a vast number of possible
designs for heat exchangers. Time has eliminated most of the
possibilities, leaving a manageable number (about 50) major
classes of heat exchanger types that have proved successful in
practice. The designer finds that the workable strategy is to first
select a few candidates from these classes and to then refine the
design using past experience to guide the design process. This is
the heuristic approach; rules of thumb are used to guide the
search, to narrow down the choices. Hence, the expert invokes
a meta-knowledge, that is, a knowledge about his knowledge.
The momentum equation need not be solved in detail for the
expert to make some comment about pressure drop and how that
affects selection. The knowledge captured for this project,
therefore, has little to do, directly, with first principles. The
primary focus must be the heuristics and supporting numerics
that the expert uses.

In parallel with the maturing of heat exchanger design, the
approach used by the experts has also matured and stabilized in
overall structure (although improvements in design and analysis
techniques mean that the actual designs are far from static). This
has greatly aided the knowledge acquisition. There is an overall
control strategy for HX selection that has emerged in the
literature [LIN82, LARS83]. As in turns out, the strategy is highly
procedural (meaning that the path to the solution is known) and
invariant (meaning that the strategy does not change for different
case studies). This finding is very important to the project
development, It means that the HX selection process can be
coded using standard procedural languages (BASIC, FORTRAN,
PASCAL, C, etc.). If the strategy had been mainly declarative
(meaning that the rules were known, ie declared, but the solution
path was not known in advance), then Al techniques would have
had to be employed. The Al approach could still be used but it
would represent unnecessary overhead and reduce the speed of
finding the solution considerably. A commercial shell was used
at the beginning of the project but it was quickly discarded as
unwieldy and unnecessary. A prototype has been written directly
‘n ‘C’ and is depicted in Figure 1.

Start h_?
F Tk
FunS %"—“ﬁvlﬂ
Step1: FILTER RULES
Exclusion \\

Step 2:
Scoring
1 2 !H)styr’ﬂ 7 8 ...\
B - A
§ 3
. AN
End @ | TOTALS "

Figure 1 Heat Exchanger Selection Scheme

As discussed in [GAR90], the solution strategy centres around the
elimination of HX’s that cannot be used for one reason or
another, and the ranking of those that are left by the use of score
cards. Thus the first major task of the code will be to perform
the exclusion. Exclusion rules could be applied sequentially to
each HX in an exhaustive search fashion. A strategy is not
needed for rule firing (inferencing) since an exhaustive search is
being done. These rules utilize user supplied data, data from the
HX data base, data from the fluid property data base, and
derived data.

Process conditions form a major aspect used to select heat
exchangers; consideration of the process conditions leads to most
of the rules and constraints. For example, a typical statement
from an expert is: if the pressure exceeds 20 bar then you cannot
use a plate and frame HX because the gaskets cannot handle the
pressure. It is convenient and efficient to collect all such values
as 20 bar into a data base and loop through all HX's. This
permits easy editing, enhances modularity, allows dynamic
loading and unloading of data, and encourages generalization.
The inference engine will use this generic rule to eliminate from
consideration those HX’s that cannot handle the pressures of the
process streams of the application in question. In a similar
fashion, generic rules have been formulated to exclude HX types
based on: maximum heat duty; maximum pressure; maximum
temperature; minimum temperature; number of streams;
temperature cross; process attributes; stream attributes; fluid-HX
incompatibilities; maximum heat transfer area; minimum heat
transfer area; and special rules for HX's that require atmospheric
pressure air or vapour streams or are subject to temperature
approach restrictions.

After applying this set of exclusion rules, the inference engine is
left with a considerably (hopefully) smalier set of possible HX's.
The task at hand is now one of ranking this remaining set. The
chosen method was score carding, in which each remaining
object (HX) receives a score on a 100 point scale for a number of
relevant attributes or constraints. These constraints or scoring
considerations can be grouped conveniently into the categories of
safety, process conditions, cost and other. Within each grouping
are a number of sub-categories. Weights are assigned to simulate
the relative weight to be‘given to each constraint. After the
constraint scores are found, the weighted sum is calculated to
give the total giving a ranking to the HX’s that were not
eliminated by the exclusion process. The score card approach
provides an good way to perform the ranking since it emulates
the expert methodology of weighing the pros and cons of the
various HX's left on the list.

This approach will yield a set of individual rules, procedures, and
constraints that are very transparent. It should be clear how each
part functions since there is a very high degree of modularity and
independence. The score for, say, the reliability of one HX can
be set quite independently of all else and changes to that
constraint gives a known and bounded change to the selection
process. The whole process is very visible, having no iterative
loops and employing a very high degree of separability of
function in each of its main parts. Changing the exclusion rules
will not effect the score card. Changing the scoring methodology
cannot affect the exclusion rule functionality. Scoring details can
be found in [GAR90].

Other schema, neural nets, rules with confidence factors and
fuzzy logic, were contemplated early in the project. Neural nets
were discarded at the beginning of the project because they are
not good for telling WHY the conclusions were reached. Fuzzy
logic seems inappropriate for the same reasons that confidence

factors were ruled sut early on: it is very difficult to adjust the
likelihoods so that the rules combine correctly.

" The prototype, constructed as an aid to knowledge acquisition

1-1-3

and a precursor to the final product, effectively gives. the'
topology of the knoWledge base a tangible form. The user and
the expert has a focus for discussion and the knowledge engineer
has a tool for knowledge elucidation. The prototype performs
very well, meeting or exceeding all expectations in ease of
construction, ease of use, speed, and accuracy in emulating the
human expert. The consensus among those interviewed was that
the user should not be constrained by the program; rather, he or
she should be free to move freely about the code segments. The
user should control the code, not the other way around.

We next look at a quite different situation, one that involves
real-time data acquisition, complexity, trend analysis, numerics
and abstract decision waking. We shall find that this requires a

very different solution,

CENTRAL SAMPLING ADVISOR FOR NUCLEAR STATIONS
In an effort to aid the operator of large and complex plants, such
as nuclear-electric generating stations and chemical process
plants, an artificial intelligence based advisor is under
development for the central sampling system of Pt. Lepreau
Generating Station. Human expertise (inherently symbolic or
pattern recognition based) must be married to the speed and
pervasiveness of computerized data acquisition, trend analysis
and simulation which all reside morc in the domain of numeric
processing. The schema advanced in this work achieves
functional and temporal abstraction by using a tiered
decomposition of the tasks, linked by real-time asynchronous
agents acting through a blackboard. An overview is shawn in
Figure 2 [GAR89].

NUCLEAR
REACTOR

|
| }

HEAT TRANSPORT
SATELLITE EXPERT
SYSTEM

\\&NALVZER 4
F

\
el |
!

i
i
g

{sIMULATO

.

R,

EXPERT
SYSTEM

ﬂnlerence
'\ Engine

and/or
Methods

,'/'“‘ - \\
/ COMPUTATIONAL *
\._ ALGEBRA

+——— data upflow from subsystem

to subsy
future areas of investigation Including
other major systems of the nuclear plant

Figure 2 Cpo:ator Companiui: “verview

The objective of this research is to develop a specific instance in

the small of functional and temporal abstraction for a real-time

system using the anthropomorphic approach of a blackboard

partitioned‘along the lines of manager - supervisor - technician:
Level 1: Manager (Planner) --> What needs to be done?
Level 2: Supervisor (Mediator)--> How is it to be done?
Level 3: Technician (Grunter)--> Do it!

This is not to say that the manager does not consider HOW or has
nothing to DO, or that the other levels are equally singleminded.
The levels merely state what the primary task of the various

ts are. Ther does not need to know how a task is to
be done or needs to monitor the details of the progress of the
execution of the task. The manager only need to know that the
task is doable and is started / in progress / finished, etc. The
supervisor’s primary task is to devise a plan of action and to
supervise it’s execution. The supervisor provides advise and
feedback to the manager and technicians, thus the supervisor
needs to be aware of Level 1 and 3 issues. Likewise, the
technician is primarily responsible for the task execution but
needs to be aware of the bigger picture to ensure the actions are
consistent, provide feedback to the supervisor, etc.

One can use this schema for a given task as a modelling construct
whether or not there are distinct agents for each level. For
instance, for the typical office situation, there exists separate
people for each level. But within each level, an individual (say
a secretary), spends some of the time as a planner, as a mediator
and as a grunter. The time or effort spend on each level would
depend on the nominal role of the individual.

The Central Sampling Advisor, as currently envisioned, is
composed of separate agents modelled along the lines of the
above three levels.

The Manager decides what issue to look at. In this case:

Is there a leak? If so, how big?

Is there a chemistry problem? If so, what action is
required?
The Manager poses the questions to the appropriate supervisors
if they exist and are not busy (on a priority interrupt basis). If
a specific supervisor is not available, then the questions can be
posted to all supervisors in the hope that one can respond. The
Manager monitors its incoming mail and reacts.

The Chemistry Supervisor responds to incoming requests (his
inbasket) and reacts by posing two questions of its own:

Is the Condensate Polisher in service?

Does a transient condition exist in the plant?
The supervisor knows which technician can supply the answers
to these questions. When the replies are received, the supervisor
invokes one of four technicians to monitor a subset of the plant
and chemistry data and to perform a fixed set of rules to
determine the course of action. The Supervisor then posts
messages to the Manager.

The Technician responds to incoming requests in a fixed manner.
It needs to gather the required data and fire the rules of its
domain in a forward chaining manner. The only difficult aspect
is the time-varying nature of the data. Discussion with plant
personnel revealed that, in general, it is not necessary to retain
past history. It is sufficient to look at the current data and apply
the domain rules. At the time of rule firing, flags are set to
denote significant events. Thus, for leak detection, it is
sufficient to record that a leak was detected and at what time it
was detected. Subsequent analysis at a later time will thus have
the needed knowledge of the event.

1-1-4

1t is clear that the above activity of the various agents requires a
central message facility. This is the domain of the Blackboard.
Nominally, it consists of a message space (shared memory or
files) controlled by a postmaster, whose duty it is to coordinate
the flow of information amongst the various agents
communicating with the blackboard. The blackboard contains
the current knowledge state (status of questions posed, etc.). The
postmaster locks and unlocks message space to prevent a READ
during a WRITE and vice versa. While the postmaster is
sequential in that it cycles through its ‘route’ repeatedly, the
overall operation is asynchronous in that the sequencing of work
is based on the messages passed, with no implicit requirement (or
guarantee) that responses will be received at any given time or in
any given order. Each agent proceeds independently to read its
own mailbox, process information and send mail to the
postmaster for delivery.

There is no forced and direct overall control of the duties to be
performed. The Planner requests actions on a priority basis,
based on its incoming mail, raising the priority as the immediacy
increases. The Supervisor reacts 1o ™" nc it arrivecand reauests
respoase from Technicians. The Technicians also react to their
mail and request information from data acquisition agents.
Messages are passed up the chain as results are achieved.

This morphology results in a natural decomposition of the
functions to be performed (functional abstraction). Higher levels
perform the more abstract operations. To provide the desired
emulation of human experts, the Planner must be flexible. The
algorithms are declarative in nature. These operations require
more time to perform in general since searches through the
domain have to be performed using backward chaining (goal
driven) strategies. The antecedent - consequence matching
required is time consuming and open-ended. Backtracking
further compounds the time required to perform the higher level
tasks. Lower levels are more non-declarative in nature. The
time required to achieve a given task becomes more defined and
the number of calculations per second increases as the agent
spends more and more of its time doing, rather than thinking
about what to do.

Thus, functional abstraction is not just a by-product of the
schema; it is a REQUIREMENT if planning, mediation and
execution is to be done in a real-time environment. The
decomposition of the problem to levels and asynchronous agents
gives the required decoupling of what is essentially a stiff system
(to borrow an analogy from applied mathematics).

The morphology is also temporally abstract in that information
hiding occurs. The higher level need not concern itself with
information details of a lower level. The higher levels have less
to do and more time to do them in. Again, this is not a by-
product; it is a REQUIREMENT if planning, mediation and
execution is to be done in a real-time environment. Higher level
inferencing is, by nature, slower than lower level calculation.
Information MUST be hidden for reasons of expediency.

DISCUSSION

It has been observed that experts are experts not so much because
of their ability to perform mental gymnastics (inferencing) but
because of their extensive knowledge base which includes much
experiential history. Take experts outside their fields of
expertisc and their performance is not markedly diffcrent than
non-experts. Human experts are experts apparently because of
their ability to use their past experiences and knowledge as
heuristics to quickly prune the search tree for the problem at
hand. Thus the human expert focuses quickly on likely solutions

and doesn’t spend time and effort doing fruitless tasks. He is
usually not substantially faster at doing a specified task but he
does only the necessary tasks. Compare this to the novice who
must try many possibilities before finding plausible paths. This
feature is exemplified by the HX example. It appears also in the
Central Sampling Advisor example. There the skilled operator
does not rely on a Sherlock Holmesian deductive capability to

diagnose a problem. Rather, the plant and thc plant controls, by
design, has been functionally decomposed, as discussed, into
systems and subsystems that are relatively simple and
independent. This allows for the design of process control and
safety systems that can be operated by trained personnel even in
times of information overioad and stress. Procedures and the use
of heuristics are the order of the day. So, once again, the
structure of the knowledge base and the knowledge contained
within that structure form the backbone of the expertise.

Thus, determining the structure of the domain knowledge is a
primary task. Our inquiry into this structure begins with the
question: "What problem is to be solved?". Asking: "Is there a
problem?" leads to an infinite search space. Asking: "Does
problem X exists?" (where X is any of a finite set of known
problems) gives a finite search space. If the space is small
enough (and most practical engineering problems are) then
exhaustive searches can be conducted, thereby eliminating the
need for a search strategy altogether. Hence it is important that
the question be properly posed. Thus we ask: "Which HX type is
the best out of the 50 or so possible HX type?", not "Which FHX
type should be used?". And we ask: "Does a leak cxist?", not
"What plant fault exists?".

Next we ask: "How can the problem be solved?". Solutions are
impossibly complex if you try to do a first principle design from
scratch. The task becomes relatively simple if one utilizes the
evolution of engineered designs to define objects to select from.
The objects are selected based on an organized and accepted
scheme, emulating the human expert’s scheme. This allows a
more meaningful emulation of rules and the user can more easily
relate to the results. Genealogy or classification was NOT an
issue in the actual inferencing, but it is important in that it aids
the enumeration of the basic objects to be selected (possible
outcomes). Thus, we evaluate the various attributes of the HX
and produce a score as a measure of its goodness for the
application at hand. And we invoke known operational
procedures to determine the size of a leak or its location.

For both examples discussed herein, the what and the how
questions were used to arrive at solution strategies. In fact, both
problems have been ‘engineered’, giving double meaning to the
title of this paper: ‘Engineering Problem Solving...".
engineering problems by engineering the solutions.

We solve

Continuing on with HOW, we note that the model is not the same
as the human. Nor does it have to be. The achievement of an
acceptable solution is the primary concern. But fidelity in
emulation of the process of achieving that solution may be
important for verification and validation purposes and for
reassuring the user that the tool is a good one. For the Central
Sampling Advisor, fidelity in emulation is important because the
opergtor must he ahle the of the

tospo censarahilaness

recommendations given to him. The advisor is functionzily
decomposed along the same lines of reasoning’ that the operator
has been trained to use. The HX case also attempts to follow the
expert reasoning patterns for the same reason, But computers are
not the same as humans. There is no reason to suspect that the
same models would work with equal expediency in the human

1-1-5

mind and in the coioputer CPU. The strengths of the computer
model (fast in numerics, doesn’t get tired or forget, and can be
exhaustive) can be used to compliment the human expert (who is
intuitive, has a dynamic and powerful heuristic, has a broader
knowledge base, etc.). For the HX case, exhaustive searches
replace heuristic searches. And for the Central Sampling Advisor ;
case, vigilant data acquisition and trend analysis replace the
operator’s ability to see patterns in displayed data trends.

Emulation is also important for explaining WHY (or equally
important, WHY NOT) a conclusion has been reached in terms
that the user can relate to. The score card approach is very good
in these respects because the user can directly see what factors
are contributing to the conclusion. In general, the Decision
Support System approach continues to be a good methodology to
handle uncertainty and compliments the IF-THEN rule approach.
It tends to be naturally WHY NOT. Unfortunately, fuzzy is
fuzzy, no matter how it is packaged. No indisputable scoring
procedures are available.

IF-THEN rules proved ideal for exclusion (collisions). The IF-
THEN rule approach encounters problems with confidence
factors and the score card approach proved superior as noted.

The modelling of the Central Sampling Advisor along
anthropomorphic lines in an asynchronous manner permits
parallel problem solving and the sharing of partial results during
the solution process. On test cases, the degradation in
performance due to the overhead involved in context switching
and blackboard management is negligible. The three tiered
layering, functional decomposition and temporal abstraction
operating with the asynchronous blackboard should provide a
means of marrying real-time data acquisition, numerics and
symbolic reasoning. However, the concept has not yet been
proven,

We have found that shells are useful as learning and scoping tools
but ultimately are discarded. Invariably, the knowledge engineer
starts out with a shell for initial discovery of the shape of the
knowledge domain. Thereafter, coding takes place directly in a
language. Embedded shells are a help but sooner or later, the
bounds of a closed shell become too restrictive. This is especially
true in engineering domains which are largely procedural,
numerically intensive and are not symbolically intensive.

The coupling of symbolics and numerics is necessary and

poasitla The svm et part teed have little or no kaowledse of

the nature of the numerics. Therefore, this is a form of shailow
coupling.

The paradigm must follow the user; otherwise the user won’t be
able to identify with the product or use it effectively. For the
HX project, it was found that engineers tend to prefer that most
input occur up front; Q&A is not appropriate since engineers
usually work from a specification sheet of some sort. Q&A input
is fragmented and disjointed. For the Central Sampling Advisor
project, the plant operating procedures and control room displays
largely define the format of the user interface and help bound
the knowledge base.

The knowledge engineer can only get so far in simple verbal
interviews. An early prototype is needed to enable efficicnt
knowledge acquisition.

CONCLUSIONS

We have found that the expert has already a search strategy and
this can be hard coded. Thus, the search algorithm to use herein
is not a ‘declarative’ one, typified by forward or backward
chaining. Rather, a ‘procedural’ or defined strategy (such as
exclude and rank for HX and piecewise refinement for the
advisor) is employed. As the prototypes mature, there may well
be a future requirement for Al type declarative search strategies.
However, the indications are that the bulk of engineering
problem solving can be achieved in a procedural manner.

A typical problem involves a mix of procedures for searching and
supporting calculations for the search. For engineering problem
solving, much of the solution is numeric. This means that a
collection of IF-THEN rules, no matter how large, is woefully
inadequate for the ‘number crunching’ required. But equally,
copious numeric output, no matter how large or correct, does not
constitute a solution. The engineer reasons about the information
contained in the calculations. Clearly, there is a need to couple
the symbolics with the numerics. Engineering strategies are such
that searching does not play a dominant role and, thus,
optimizing the search strategy will result in little payoff.

Engineers engineer systems in a piecewise refined manner where
simplicity is valued. Complexity is avoided. Declarative
procedures are invoked whenever possible. In design, ie
constraining, time has eliminated all but the successful evolutions
- defining the pre-enumerated set of alternatives to choose from.
In operations, operator overload, response time, etc., necessitate
procedural responses. Successful operating plants are, by
definition, procedural,

In short, the problem solving strategy usually appropriate to
engineering problems is to select from among many alternatives
(symbolic in nature), supported by calculations (numerics). This
holds true whether the problem solving agent is operating as an

individual or in a group. We have found that IF-THEN rules
and search strategies do not play a major role in typical
engineering problem solving.

So, is there no role for Al in the engineering domain? Yes and
no. It depends how you define AI. One definition [BYL91] is:
Al is the study of the relationship between computation and
intelligence. If that definition is operative, then this whole paper
is about Al and clearly there is a role for Al to play. But if one
were to limit the definition of AI to the enterprise of designing
computer systems that exhibit the characteristics associated with
intelligence (understanding, learning, reasoning, solving
problems, etc.), then there is not a major role for Al to play at
present. Currently, the best use of computers in the engineering
field is to offload the human by taking care of the mundane,
repetitive or procedurally intensive tasks. This is what the
typical engineer today needs and wants. This fits well with the
Both the HX and advisor
projects revolve around the selection from pre-enumerated sets.
Neither relies to any great extent on "traditional” AI or ES
techniques. Rather, it is more expedient to resolve the code
along the same functional lines as the human expert engineer has
used - functional decomposition and piecewise refinement. For
the problems investigated, search heuristics is neither a necessary
nor efficient paradigm to use. The power of Al and ES
inferencing is the flexibility in setting agendas, adapting to the
resetting of goals, and ease of setting up and maintaining
inference intensive solutions. Engineers tend to use static
strategies and so the domain of engineering problem solving
cannot easily capitalize on traditional Al and ES developments.

human desire to remain in control.

1-1-6

However, looking ahead, perhaps more complex invocations
might lead to a different balance. Perhaps other engineering
problems entail a significant element of synthesis (herein, there
is none). Perhaps, there exists a more general paradigm, say a
kernel of production rules that guide a ‘little engine that could’,
that generate solution strategies on the fly, that solved
engineering problems in a more generic manner. That would be
Al

DATA ACQUISITION SIMULATOR

AND (mainly numeric)
TREND ANALYZER

Data AcGUISTIon time slices Simulation time slices
Monitor and Control Directives

v

EXPERT SYSTEM
(mainly symbolic)

Figure 3 Blackboard Schema

ACKNOWLEDGEMENTS

This work has been made possible through funding from Atomic
Energy of Canada Ltd. and the Natural Sciences and Engineering
Rescarch Council of Canada, with further facility and staff
support from HTFS-Harwell, UK, HTFS-CRNL, Canada, and
New Brunswick Electric Power Commission. The authors wish
to express their sincere thanks to the many individuals who have
freely given their time and effort in support of this project.
Without exception, their willingness to provide input and their
courteousness is unsurpassed.

REFERENCES

BYLS1 T. Bylander, public electronic communication, 1991.

GARS89 W.J.Garland, W.F.S. Poehlman, N.Solntseff, J. Hoskins
and L.Williams, "Intelligent Real-time Systems: Towards
an Operator Companion for Nuclear Power Plants”,
Engineering Computations, 6, (1989) pp.97-115.

GAR90 Garland, Wm. J., "Knowledge Base Design for Heat
Exchanger Selection”, Engineering Applications of
Artificial Intelligence, Volume 3, September 1990.

LARS3 Larowski, A. and Taylor, M.A., "Systematic Procedure
for Selection of Heat Exchangers", Proc. Instn. Mech.
Eng., Vol 197A, January 1983.

LINS2 Linnhoff, B., Townsend, D.W., Boland, D., Hewitt, G.F.,
Thomas, B.E.A., Guy, A.R., and Marsland, R.H., "User
Guide on Process Integration for the Efficient Use of
Energy", Institute of Chemical Engineering, 1982.

PARSS Parsaye, K. and Chignell, M., "Expert Systems for
Experts", John Wiley & Sons, Inc., ISBN 0-471-60175-6,
QA76.76.E95P27, 1988.

WOLS7 Wolfgram,D.D., Dear, T.J., Galbraith,CS., "Expert
Systems for the Technical Professional”, John Wiley &
Sons, 1987, ISBN 0-471-85645-2.

