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ABSTRACT

In order to operate a successful plant or process, continuous improvement must be made in the
areas of safety, quality and reliability. Central to this continuous improvement is the early or proactive
detection and correct diagnosis of process faults. This research examines the feasibility of using
Cumulative Summation (CUSUM) Control Charts and artificial neural networks together for fault
detection and diagnosis (FDD). The proposed FDD strategy was tested on a model of the heat transport
system of a CANDU nuclear reactor.

The results of the investigation indicate that a FDD system using CUSUM Control Charts and a
Radial Basis Function (RBF) neural network is not only feasible but also of promising potential. The
control charts and neural network are linked together by using a characteristic fault signature pattern for
each fault which is to be detected and diagnosed. When tested, the system was able to eliminate all false
alarms at steady state, promptly detect 6 fault conditions and correctly diagnose 5 out of the 6 faults. The
diagnosis for the sixth fault was inconclusive.

Key words: fault detection and diagnosis, cumulative summation control chart, artificial
neural network, radial basis function, multi-layer perceptron, fault signature pattern

1. INTRODUCTION

In order to operate a successful plant or process, continuous improvement must be made in the
areas of safety, quality and reliability. Improvement in these areas will lead to cost reductions which help
make the plant a viable operation in a competitive market. Central to the continuous improvement of
safety, quality and reliability is the early or proactive detection and correct diagnosis of process faults. A
fault can be defined as a non-permitted deviation of a characteristic property of the process which will
cause a certain level of deterioration in the performance of the process. The deviation can be caused by
temporary or permanent physical changes. This can be compared to a failure, which can be defined as a
complete degradation of performance of the process [1]. Obviously, it is desirable to detect and diagnose
faults as soon as possible after their occurrence.

The topic of trend analysis or fault detection and diagnosis (FDD) is not new. Several methods of
performing this task have been previously investigated and will be briefly discussed in the Background
section of this paper. The paper will then discuss the results of a research project intended to determine
the feasibility of a specific FDD strategy. The strategy being investigated was to use cumulative
summation (CUSUM) statistical control charts and artificial neural networks to accurately and promptly
detect and diagnose process faults.



2. BACKGROUND
2.1 Strategies for FDD Systems

There are several different strategies for both fault detection and fault diagnosis. For fault
detection, important measurable variables, or unmeasurable variables or parameters which are estimated,
are tracked and checked that they are within a certain tolerance of their normal values. If the values are
not within the specified tolerance, a fault has been detected. Fault detection methods can be divided into
two classes, depending on the presence or absence of an appropriate process model:

(1) techniques using only measurable signals (input and output signals from the process)
(2) techniques using the state (dependent) variables and parameters from a known process

model.
It was decided to use statistical control charts for fault detection for two reasons. First, it may be difficult
to develop a model of the process which will be accurate enough to be used in the FDD system. Secondly,
by using control charts for measured signals, the process operators will work with variables with which
they are familiar. This familiarity can increase the chance of acceptance of the FDD system at the operator
level.

Regardless of which method of detection is used, one of the main objectives of the detection
phase is to concurrently minimize the number of false signals that occur when the process is in normal
mode and the time between fault occurrence and a true signal. For statistical control charts, the trade-off
occurs in the form of how tight or loose the limits for action are set and is quantified by the Average Run
Length (ARL). The ARL of any control chart is defined as the average number of samples taken before the
control chart gives an “out of control” signal indicating that an intervention must be made in the process.
A good control chart scheme should have a long ARL when the process is running on target. This will
minimize the number of false signals. Also, the ARL should be small when the process has shifted away
from the target by a substantial amount. This will minimize the response time to a change in the process.
The ARL is used to determine the desired balance between false signals and response time to a process
change.

The main goal of fault diagnosis should be to determine the root cause of the fault. Depending on
the nature of the fault, other diagnosis results could include time of occurrence, size and location. There
are three main methods of fault diagnosis; human expertise in the form of the plant operator, knowledge-
based systems and pattern recognition techniques. Pattern recognition is an attractive choice for fault
diagnosis because this is essentially what an operator does when diagnosing faults. Although the operators
may not be familiar with the formal techniques for pattern recognition, the concept of associating faults
with patterns of instrumentation readings should be familiar. Again, this familiarity should improve the
chances of the FDD system being accepted by the process operators. Classical mathematical pattern
recognition techniques include forms of the nearest-neighbour rule and linear discriminate functions.
Linear discriminate functions are only useful for classifying groups or classes which are linearly separable
and the accuracy of the nearest-neighbour rule when used for this type of application is not acceptable [2].
A relatively new method of pattern recognition involves the use of artificial neural networks. There have
been several studies reported on where artificial neural networks have been used for fault diagnosis [2, 3,
4. 5]. The ability of artificial neural networks to construct nonlinear decision boundaries or mappings and
accurately generalize in light of noisy or incomplete input data are very desirable qualities.

2.2 CUSUM Control Charts

In an FDD application, the goal is to detect when measured data have shifted away from their
normal or target value. Hence, charts for controlling process means were required. Also, in order to
provide a proactive FDD system, it is imperative that the fault conditions be detected quickly. This can be
done by detecting moderate persistent shifts in mean valves promptly. A popular type of chart which is
sensitive to moderate persistent changes in mean values is the cumulative sum (CUSUM) control chart.
This chart was first introduced by E.S. Page in 1954 [6]. As the name implies, this type of chart camulates
deviations of the sample averages from the target or desired value. Once these cumulations reach either a
high or low limit, an out-of-control signal is given. CUSUM charts have a useful property for the FDD
application. An estimate of the current process mean can be made when a CUSUM signal occurs. This
estimate can be used for the fault diagnosis. A typical CUSUM control chart scheme is shown in Figure 1.
As observed, it consists of two charts, a run chart plotting the successive differences between the sample
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average and target, (x-), and the control chart. The parameters shown on the control chart, are defined as

follows:

k : the threshold for cumulation, which can be defined as the minimum difference between sample average
and target that will cause the cumulation to begin. This value is also sometimes referred to as the
allowable slack in the process. Typically, k will be set equal to one half of the deviation from target
which is to be detected quickly [7].

SH; and SL;: the cumulation terms and are calculated as follows:

SH. = max[O,SH# +SH. ]
1 1 i—1

SL. = max[O,SL# +SL. ]
1 i i-1
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Figure 1 : Typical CUSUM Scheme



h : the control limit. If either SH or SL cumulate above h, intervention in the process is required.
Using the above terms, the estimate of the current process mean can be calculated from the following
equations:

Mean Estimate for Cumulation on High Side (SH(i) > 0.0)

Current Mean Estimate = Target + k + SH;;/Ny

Mean Estimate for Cumulation on Low Side (SL3) > 0.0)

Current Mean Estimate = Target - k - SL/N,_

where:

SH;, SL; are the respective high and low cumulations
Ny, Ny, are the number of samples taken between the start of the
cumulation and the alarm

2.3 Artificial Neural Networks

An artificial neural network simulation or neural network can be defined as a massively parallel
distributed processor that can store experimental knowledge and make it available for future use [8]. The
knowledge is acquired via a learning process and stored in inter-neuron connection strengths known as
synaptic weights. The learning process can be completed by one of two methods: supervised or
unsupervised. With respect to pattern classification, supervised learning is used when the classification of
all training input patterns is known. For example, each training pattern would be classified as a normal
mode pattern or a pattern representing one of the fault modes. This is the context of the fault diagnosis
problem being investigated and hence this method of learning will be used. There are two basic network
architectures used with supervised learning; the multi-layer perceptron (MLP) network and the radial-
basis function (RBF) network. Each architecture will be described below.

2.3.1 MLP Architecture
Figure 2 depicts a multi-layer perceptron network.
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Figure 2 : Multi-Layer Perceptron Network (adapted from [8])

In Figure 2, the large circles in each layer represent neurons and the lines connecting the neurons

represent the synaptic weights of the network. The neuron may be represented mathematically by the
following equations:

p
Vi = j)=:0wijj
Yp =olv;)



where:

w3 = input weights to neuron k

x; = output values from the previous layer

v, = input to the transfer function of neuron k

¢ = transfer function of neuron k

¥« = output from neuron k
Typical transfer functions include linear functions, hard limit functions and log-sigmoid and tan-sigmoid
functions. The values of the synaptic weights are determined by training the network using the back-
propagation algorithm. The back-propagation algorithm consists of two passes through the network
layers. In the forward pass, an input pattern or signal is propagated through the layers of the network
while the synaptic weights are held constant. This results in the network output or response to the input
pattern. The network response is then subtracted from the desired response and the error is propagated
backwards through the network. During this pass the synaptic weights are updated. This process is
continued until a pre-determined error goal is reached. The error goal is expressed as the sum of the
squared error (SSE), calculated as follows:

#pattems #outputs 2
SSE= '21 21 (desired - actual)ij
1= J=

A detailed description of the back-propagation algorithm can be found in Haykin [8].

2.3.2 RBF Architecture

Radial basis function networks are another type of network architecture. They use one hidden
layer to perform a nonlinear mapping from the input space to a new space. This mapping is constructed
using a number of nodes in the hidden layer. The total network consists of three layers, as shown in
Figure 3. The first layer is composed of p input nodes, where p is the number of dimensions in the input
vector. The hidden layer is composed of the nonlinear processing units or nodes which are connected
directly to all input nodes. The output layer is used to linearly combine the output of the hidden nodes,
according to the following formula:

M
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Typically, unnormalized Gaussian functions centered at t; are used. They are defined as:
2
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where:
lIx - &/l = the Euclidean distance between a p dimensional input vector, x
and the i" center, t,.
o; = width or standard deviation of the Gaussian function centered at t;.

There are different learning strategies which can be used to determine the synaptic weights of the
radial basis function network. These strategies depend on how the free parameters of the network are to be
adjusted. The free parameters of the network are the number of centers, locations of the centers, t; and
width of the centers, or. The simplest learning strategy is to randomly choose the centers of the radial
basis functions from the training data and assume they are fixed. The functions can then be normalized by
setting the widths of the functions equal to:

d

C=—
N2M

where:

d=maximum distance between the chosen centers
M = number of centers
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Figure 3 : Radial Basis Function (RBF) Network (adopted from [8])

Finally, the weights of the output layer, wy, can be calculated directly as follows:
w=G*d
where:
d = matrix of the desired output vectors
G is the pseudoinverse of the matrix G
A detailed description of the different learning strategies can again be found in Haykin [8].

2.3.3 Choice of Neural Network Architecture

The two architectures described above have their own advantages and limitations. The multi-
layer perceptron networks trained using the backpropagation algorithm are characterized by long training
times but can generalize well in regions of the input space were there is little training data. The radial
basis function networks can be trained quickly but may require a large number of hidden nodes to produce
a smooth mapping due to the exponential nature of the Gaussian functions. For the FDD application, the
optimum choice for neural network architecture is not immediately clear. Therefore, it was decided to test
each architecture for the task of fault diagnosis and compare their performance.

3. GENERIC FDD SYSTEM METHODOLOGY

The methodology for the purposed FDD strategy is shown in Figure 4. It is essentially a three
step process; detection of the fault by a CUSUM control chart signal, generation of a pattern to describe
the process at the time of fault detection (fault signature pattern), and fault diagnosis via pattern
recognition with neural networks. The link between the detection and diagnosis for a fault is the fault
signature pattern (FSP). The fault signature pattern should contain as much information as possible about
the process at the time of fault occurrence. In order to do this, the estimates of the current process means
calculated from the CUSUM schemes were used. As observed from the formulas given in Section 2.2, the
current mean can be estimated at any time there is a cumulation, that is, when SH(i) or SL(i) > 0.
Therefore, the fault description pattern can be generated using the current estimates of the process means
for all analyzers when a signal occurs in one analyser. This method will belp capture the dynamics of the
process. For example. a certain fault may cause the readings of all analyzers to increase, but some quicker
than others. Typically, the first CUSUM signal will be generated by the analyzer which is moving away
from its target the quickest. However, when this signal is generated, other readings may have also
increased but have not generated signals. Using their CUSUM schemes, their current means can also be
estimated using the current cumulations. Hence, the fault description pattern will include information
about the dynamics of the entire process.
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4. TESTING APPARATUS

In order to determine the feasibility of the purposed FDD methodology, a test bed was required.
The test bed used was a model of the heat transport system of a CANDU nuclear reactor. A diagram of the
model is shown in Figure 5.

The loop can be divided into two sections, primary side and secondary side, similar to a nuclear
reactor. The primary side consists of water being pumped in a figure of eight loop, as shown in Figure 5.
As the water flows through the core it is heated by the pipes electrically. The water then flows up through
one cooling tower around the U-tube and down through the second cooling tower. It then flows through a
pump and into a second core section. As observed from Figure 5, the flow through each of the two core
sections is in opposite directions and the loop is symmetric. The primary side flow is identified as the
dark solid lines. The instrumentation on the primary side consists of four temperature sensors and two
flow sensors. T2 and T4 measure the temperatures at the core inlets and T3 and TS5 measure the
temperatures at the core outlets. There are two flow orifices and pressure transducers, F1 and F2, located
immediately after the two pumps.

The secondary side is defined as the cooling water side. The cooling water enters the bottom of
four cooling towers, flows upwards removing heat from the primary side and exits at the top of each
tower. The secondary side flow is identified as the light solid lines in Figure 5. The instrumentation on the
secondary side consists of five temperature sensors. T1 measures the inlet cooling water temperature. T6
and T7 measure the outlet temperatures from towers 1 and 2 respectively, while T8 and T9 measure the
outlet temperatures from towers 4 and 3 respectively. The exact locations of all 11 sensors are shown in
Figure 5.

The data acquisition system for the model was set up to collect measurements from the 11 sensors
every 0.25 seconds. The measurement data was written to a file on a PC hard disk in binary format. The
program created a new data file every five minutes.
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Figure 5 : Diagram of Model Heat Transport System

In order to run the loop at a steady state condition, four operational parameters must be set and
monitored. These parameters are the power supplied to the core, the flowrate of the primary side water,
the flowrates of the secondary side water through each of the cooling towers and the pressure on the
primary side. The power level is controlled by the variable resister and it is monitored by volt and amp
meters. The resistor and meters are located on the control panel. The primary side flowrate is controlled
by the two flow control valves, labeled valves #3 and #4 in Figure 5. Typically, they are throttled back
from their fully open position. In order to try and maintain the symmetry of the loop, both valves are
throttled back by the same amount. The primary side flowrate is monitored by the digital flowmeter,
connected to flow orifice #1, as shown in Figure 5. The secondary side flowrates are controlled
individually for each tower. The control valves are located on the control panel. The individual flowrates
are monitored by the four tube flowmeters, also located on the control panel. Finally, the pressure of the
loop is set by bleeding any air out of the system and pressurizing the model to 4.0 psig.

5. FDD SYSTEM IMPLEMENTATION METHODOLOGY

The methodology for developing the FDD system for the model was a seven step process. This
process is outlined in Figure 6. Each step will be detailed below.
Step 1: In order to develop the FDD system, some fault scenarios which were to be detected and

diagnosed had to be chosen. It was decided to attempt to detect and diagnose six different faults. The
faults used were:

1) 10% power increase, F1

2) 10% power decrease, F2

3) cooling water shut off to all four cooling towers, F3

4) cooling water shut off to the right hand side cooling towers (towers 1 and 2), F4

5) right hand side re-circulating pump valve open (valve 1), F5

6) left hand side re-circulating pump valve open (valve 2), F6

The locations of the cooling water towers and re-circulation valves are shown in Figure 5.
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Step 2: The next step in the FDD development was to establish the steady state conditions of the loop.
Steady state was required in order to define the aim values to be used in the CUSUM calculations. As
previously mentioned, for the model, four operational parameters had to be set to establish steady state
conditions.

Step 3: With the steady state conditions established, the CUSUM schemes for each analyzer were
determined. In order to calculate the CUSUM scheme for each analyzer, three parameters were required:
the aim, the standard deviation, and the magnitude of the change from the aim which was desired to be
detected quickly. The aim and standard deviation could be calculated from the data collected in Step 2. 1t
was decided to try and detect shifts of 2 standard deviations from the aims quickly. This size of deviation
was chosen so that the signature pattern for each fault would be distinct when a CUSUM alarm occurred.
This point will be expanded on in Step 5.

Step 4: The next step was to generate signature patterns of current mean estimates for each of the test
fault scenarios described in Step 1. Generally, this data could be acquired by implementing the faults in
the actual process, if possible, from historical data, if available, or by simulation. In this case, the model
was run at steady state conditions and then a fault was implemented. The signature pattern was defined as
the values of the 11 current mean estimates when the first CUSUM signal occurred after the fault was
started. It should also be noted that a signature pattern of the steady state condition was defined as the aim
values of each analyzer.

Step 5: One approach to fault diagnosis could be to look for the exact signature patterns determined in
Step 4 when CUSUM signals occurred. However, it would be highly unlikely that the exact signature
pattern would occur again, given the natural variation in the analyzer measurements. This is one driving
force for the use of neural networks for fault diagnosis: their ability to generalize with noisy data.
Therefore, Step 5 was to create training data for the neural network. This was done by adding normally
distributed or Gaussian noise to each analyzer reading for each signature pattern. The noise had a mean of
0 and standard deviation equal the standard deviation of each analyzer at steady state, as determined in
Step 3. The procedure of adding noise with a variation of one standard deviation and attempting to detect
shifts of two standard deviations was designed to generate training data distinct enough to allow the
neural network to learn the conditions for each fault. This method allows training data to be generated
from one occurrence of the fault in the actual system. This addresses the problem of having a vast amount
of data for steady state conditions and very little data for fault conditions.

Step 6: Different neural network architectures were trained using the training data generated in Step 5.
Both MLP and RBF networks were trained and tested.



Step 7: The entire FDD system, consisting of the CUSUM schemes and neural networks developed in the
previous steps, was tested using data from the model.

6. RESULTS
6.1 Experimental Design

The data were collected from the model in a series of two experiments. One series was designed
to collect development data and the second series was collected to test the final system. Each experiment
consisted of collecting 0.5 hours of steady state data and up to 0.5 hours of fault data. Each series of
experiments collected data for all fault conditions. The data acquisition rate of 0.25 samples per second
was considered excessive for this application when the nature of the faults to be detected was taken into
account. Therefore, it was decided to develop the FDD system based on a new data point from the model
every 10 seconds. This data point was calculated from the average of the 40 samples collected by the data
acquisition system during the 10 second period.

6.2 CUSUM Schemes
Three quantities are required to design a CUSUM scheme; the target values for each analyser, i ,

the standard deviation for each analyser, o , and the shift in mean which is desired to be detected
quickly, A . The development of CUSUM charts involves two basic assumptions; that the individual
observations are independent (no autocorrelation) and approximately normally distributed. Nonnormality
is a more serious problem when individual observations are used by virtue of the Central Limit Theorem.
This theorem states that as the size of a subgroup of samples increases, the distribution of the subgroup
averages will approach a normal distribution. This is regardless of the distribution of the individual
measurements. However, when the individual measurements are used for the control chart, their
distribution must be checked for normality. One method is to plot and inspect the histograms of the data.

The data used to develop the CUSUM schemes was taken from 2 hours of the steady state data
collected during the first set of experiments. This resulted in 720 data points. When histograms of this
data for each analyser were plotted, the distributions appeared to be approximately normal, although some
are better than others. This result would be influence by the fact that each “individual” observation is
actually the average of 40 measurements. Based on the histograms, it was decided that this data was
acceptable for calculating the control chart schemes. The means of the steady state data were calculated
for each analyser. These values are shown in Table 1.

Analyser Steady State Operating /
Point
Tl 10.24°C
T2 42.75°C
T3 50.17°C
T4 41.75°C
T3 48.84°C
T6 26.20°C
T7 28.78°C
T8 26.23°C
T9 26.02°C
Fl 746 V
F2 7.15V

Table 1 : Steady State Signature Pattern

The values in the table above were used as the steady state signature pattern.
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The standard deviation for each analyser, o , was estimated from the steady state data points
used to calculate the target values above. The standard deviations were estimated using the standard
formula :

For samples sizes greater than 50, (n>50), c, is approximately 1.0. The values of the estimates of ¢ for
each analyser are shown in Table 2.

Analyser Estimate of o
T1 0.07°C
T2 0.35°C
T3 0.47°C
T4 0.33°C
T5 0.42°C
T6 0.27°C
T7 0.29°C
T8 0.24°C
T9 0.26°C
F1 0.03V
F2 0.05V

Table 2 : Standard Deviation Estimates

Finally, it was decided to set A , the shift in mean which is desired to be detected quickly, equal
to 2 * o . This was done to allow the neural network training data to be distinct. Given the,above data. the
CUSUM schemes were set up according the four steps below:

l.threshold=k=A/2=¢c

E3
2k =k/o=10
3.chose b~ =35 to give ARL(0)=2670, ARL(A )=4.25

4. control limit= h =h" *o
The average run lengths given above were obtained from tables found in Marquardt [9]. Given that data
points were available every 10 seconds, one could expect a false alarm when the process is exactly on
target every 7.4 hours and a shift of A should be detected in 42.5 seconds.

The above schemes were tested on the four days of steady state data to determine how many false
alarms would occur. Considering there was 2 hours of steady state data, at most, one false alarm for each
analyser would be expected. When the schemes were applied to the data, 300 false alarms occurred. The
source of the false alarms was determined to be the day to day range of the mean values for each analyser,
This in effect caused a strong auto correlation in the data which violated one of the basic assumptions of
the data to be tracked with CUSUM charts. To compensate for this auto correlation, the threshold limits
were calculated by adding k to the maximum daily mean and subtracting k from the minimum daily mean.
This in effect widened the threshold for cumulation and therefore increased the value of A for each
analyser. The actual control limits were also doubled to 7.0 * &. This reduced the number of false alarms
to 4 which was an acceptable values. The final CUSUM schemes are summarized in Table 3.
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Analyser Aim A Upper Threshold | Lower Threshold Control Limit
Limit Limit (=7.0%0)
T1(°C) 10.24 289 ¢ 10.33 10.13 0.48
T2 (°C) 42.75 3470 43.41 42.40 2.43
T3 (°O) 50.17 3460 51.03 49.40 3.31
T4 (°C) 41.75 3420 42.38 41.25 2.30
T5 (°O) 43.84 3390 49.63 48.19 297
T6 (°C) 26.20 39 ¢ 26.82 25.76 1.87
T7 (°C) 28.78 4.06 o 29.37 28.17 207
T8 (°0) 26.23 2850 26.56 25.88 1.69
T9 (°C) 26.02 4100 26.60 25.54 1.81
F1 (V) 7.46 2310 7.50 742 0.23
F2 (V) 7.15 346 ¢ 7.22 7.03 0.39

Table 3 : Final CUSUM Strategies

6.3 Fault Signature Patterns

The fault signature patterns were defined as the first pattern associated with the first realistic
CUSUM alarm after each fault was initiated in the model. The patterns were taken from the data collected
in the first set of experiments. A summary of the fault signature patterns and the times required for

detection is given in Table 4.

Analyser Fl F2 F3 F4 F5 F6
TI1(°C) 10.24 10.94 10.90 10.54 10.24 10.15
T2(°C) 43.24 42.75 43.53 43.50 43.16 42.75
T3(°C) 51.27 49.61 50.64 50.77 50.78 50.65
T4(°C) 42.19 41.74 42.49 41.75 42.14 42.15
T5(°C) 4953 48.28 49.33 48.84 49.40 49.30
T6(°C) 26.20 26.20 26.60 26.77 25.89 26.20
T7(°C) 28.46 28.78 28.78 29.14 2911 29.21
T8(°C) 26.44 26.23 26.84 26.23 26.23 26.23
T9(°C) 26.02 26.02 26.51 26.02 26.02 26.02
F1(V) 7.46 7.46 7.50 7.42 5.78 6.24
F2(V) 7.15 7.14 7.16 7.15 5.66 5.95

Detection 3.7 min. 7.2 min. 1.8 min. 2.0 min. 0.5 min. 0.5 min.
Time

Table 4 : Fault Signature Patterns

6.4 Neural Network Design

Both the RBF and MLP networks were designed using MATLAB Neural Network Toolbox,
Version 4.2 by MathWorks Inc. Training data for the neural networks was generated using the procedure
described in Step 5 of Section 5 and the steady state and fault signature patterns described above. The
noise used had a mean of 0 and standard deviation equal to those shown in Table 2. for each analyser
respectively. It was normally distributed because that distribution was assumed for each analyser. For this
application, the training set consisted of 350 patterns, fifty training patterns for each of the seven states
were generated. A testing set was also created, consisting of 5 patterns from each state for a total of 35
testing patterns. The output layer for each network consisted of 7 nodes. one node representing each of
the seven states. The output for each pattern contained a 1 in the proper location and a 0 elsewhere. For
example, the output for SS would be [1,0,0.0,0,0,0]" while the output for F3 would be [0,0,0,1,0.0,0]". For
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this application, the classification of a pattern was determined by the neuron with the largest output in this
output layer.

6.4.1 MLP Network Design

The initial architecture of the MLP network was chosen to be one hidden layer consisting of 10
neurons and an output layer consisting of 7 neurons. The log-sigmoid transfer function was used for all
neurons because of it’s 0 to 1 output range. When this network was trained, the SSE stopped decreasing
after 2000 epochs and was not at an acceptably low level. Several changes were made to the training
procedure, including changing the momentum constant, changing the initial weights and increasing the
number of neurons in the hidden layer to 15. However, the problem was only overcome when the input
patterns were normalized to the SS signature pattern. This provided input patterns containing values all
close to 1. After this change, the network was trained for 100000 epochs and the SSE was reduced to 18.4.
The classification accuracy for the training data was 96.2% while the classification accuracy for the 35
testing patterns was 91.4%.

6.4.2 RBF Network Design

The free parameters of the radial basis function network are the location, number and width of
the centers. In the MATLAB training function for RBF networks, the maximum number of centers or
neurons, width of the centers and the error goal is specified by the user. The function then starts with one
center and calculates the sum of the squared error. The locations of the subsequent centers are chosen
from the training data. Centers are added until the error goal is reached or the maximum number is used.
The location of each new center is based on which training data point will reduce the squared error the
most.

The RBF network was designed in two stages. First, the classification accuracy of the network
was calculated for different numbers of centers for both the training and testing data. The spread of the
centers was set to the default value of one. The optimum number of centers was found to be 105. Then the
number of centers was held at 105 and the width of the centers was varied. The width was varied from 0.1
to 5.0. The optimum width was found to be 1.14. Using this architecture of 105 neurons with spreads of
1.14, the classification accuracy of the training and testing data was 98.3% and 94.3% respectively.

6.5 FDD System Performance ~

The performance of the FDD system was analyzed from two different perspectives, First, the
performance was analysed with respect to the number of false alarms generated during normal operation
mode when the two tools, CUSUM charts and neural networks, were used in combination and
individually. Secondly, the performance of the system with respect to fault detection and diagnosis during
faulty operating modes was analysed. Both performance measures will be discussed below. The
performance of the FDD system was evaluated using the data from the second set of experiments.

To evaluate the performance with respect to false alarms, the number of alarms which occurred
during steady state for each experiment was determined. The number of alarms was calculated using the
CUSUM charts and neural networks individually and then together. Before this evaluation could be
completed, guidelines for determining when an alarm was present needed to be set for all three cases. For
the CUSUM chart alone, this was straight forward. A false alarm would be considered present if there was
a CUSUM alarm. For the neural networks alone, some guidelines needed to be set. During the training of
the networks, the classification results were determined from the largest output from the neurons in the
output layer. For this performance evaluation, it was decided to add the additional guideline that the value
of the winning output had to be greater than 0.5. If all outputs were less than 0.5 the output of the neural
network would be considered inconclusive. That is, the system was not considered at steady state but no
conclusive fault diagnosis could be made. This was done to prevent a conclusion from being made when
all the outputs from the network were small. Finally, when both the CUSUM charts and neural networks
were used together, an false alarm was considered present only if both the CUSUM chart “and” neural
network indicated so.

Table 5 shows the number of false alarms which occurred during the steady state operation. It is
important to note that when the CUSUM charts and RBF network were used in combination, no false
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Individual Applications Combination Applications

| CcusuM | RBF MLP | CUSUM&RBF | CUSUM & MLP

Total | 44 I 17 | 68 ] 0 | 11

Table § : False Alarms During Steady State Data

alarms were generated by the FDD system at steady state. This result indicates that using the two tools in
combination to confirm each others results is more effective than using the tools separately.

The performance of the FDD system in terms of actual faulty process conditions was also
evaluated using the tools individually and in combination. For the diagnosis phase, it was decided to use
the first fault indication, other than an inclusive output, as the fault diagnosis. If the output of the network
was inconclusive and a CUSUM alarm was present, the process was considered not at steady state but no
conclusive diagnosis could be made. The results of the fault detection and diagnosis are shown in Table 6.

The following general observations can be made from Table 6. First, as indicated in the table,
there is obviously no diagnosis when CUSUM charts are used alone. The next point to note is associated
with the diagnosis of F5 with both the RBF and MLP networks. These are highlighted by F5* in Table 6.
In these cases, F6 was actually diagnosed 20 seconds after the fault was initiated and F5 was correctly
diagnosed at the 30 second mark. This was expected because the flowrates for the F6 FSP were larger than
F5, while all other measurements were approximately the same. Hence, as the flowrates dropped, F6
would first be identified, followed by F5 as the flowrates reached the steady state values for F5. This was
considered a minor fact considering that F5 was correctly diagnosed 30 seconds into the fault and that the
diagnosis then remained correct for the duration of the fault.

There was one incorrect fault diagnosis in the testing data. This occurred in the diagnosis of F5
with the MLP network. As observed in Table 6, the MLP network diagnosed F5 as F6. This may have
resulted from the similarity in the two FSP’s and may be corrected with more network training. It is
interesting to note that, except for the first 20 seconds, the RBF network is able to correctly diagnosis both
FS5 and F6. There was one inclusive fault diagnosis in the testing data, which occurred for F3 with the
RBF network. After F3 was implemented, the results of the network was inclusive, that is, no outputs were
greater that 0.5. However, the RBF network, along with the CUSUM charts, did indicate that the process
is no longer at steady state. As observed in Table 6, the MLP network did correctly diagnosis F3 for the
testing data. The inconclusive diagnosis by the RBF network appears to be caused by a low drift in T8
prior to the fault initiation. This drift caused some CUSUM alarms during the steady state operation but
did not effect to output of the RBF network. When the steady state value for T8 was substituted in the raw
test data, F3 was correctly diagnosed by the RBF network. Finally, it should be noted that the detection
times for all faults ranged from 20 seconds for F6 to 5.0 minutes for F2.

Individual Applications Combination
Applications
Actual CUSUM RBF MLP CUSUM CUSUM
Fault & RBF & MLP
Diagnosis Diagnosis Diagnosis Diagnosis Diagnosis
F1 (N/A) Fl1 F1 F1 F1
2 (N/A) F2 F2 F2 F2
F3 (N/A) INCLU F3 INCLU F3
F4 (N/A) F4 F4 F4 F4
F5 (N/A) F5° F6 F5 F6
F6 (N/A) F6 F6 F6 F6

" see text above
Table 6 : Detection and Diagnosis Performance Results
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The two networks tested in this study had distinct and different responses as the faults progress.
This is shown in Figure 7, which shows the networks’ response to F1 from the testing data. The signal
from the RBF network dies away as the fault progresses while the signal from the MLP network remains
prominent. This trend was observed in other faults as well. The RBF network appears closer to reality as it
shows the fault as a transient whereas the MLP network seems to show the fault as a new steady state.
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Figure 7 : Neural Networks Response to F1

7. CONCLUSIONS

Based on the previous discussion, the following conclusions can be made regarding the
development of the FDD system:

(1) Using CUSUM charts and a RBF neural network in combination and linked using fault
signature patterns for specific faults is a feasible FDD system. When the two tools are used together for
fault detection, false alarms while the process is at steady state can be eliminated. Also, using the tools in
combination will not adversely effect the systems’ performance when actual faults are present.

(2) The RBF network appears to be the best choice of neural network for this application,
considering its’” performance for both steady state and fault conditions. In terms of steady state conditions,
the RBF network, in combination with the CUSUM charts, was able to eliminate all false alarms. The
combination of the MLP network and CUSUM charts could not eliminate all false alarms at steady state.
Both the RBF network and MLP network, along with the CUSUM charts, could promptly detected all
fault conditions. In terms of diagnosis, the RBF network made one inconclusive diagnosis during testing
while the MLP network made one erroneous diagnosis. Although both results are not desirable, an
inconclusive diagnosis would be preferred to an erroneous one. Finally, as the faults progress, the RBF
network gives a more realistic picture of the situation, showing the fault as a transient as opposed to a new
steady state, which the MLP network predicts. Once the RBF no longer recognizes the fault, the output is
inconclusive.

(3) In practical applications, widening the thresholds for CUSUM schemes is a feasible technique

for compensating for auto-correlation in the data. In this application, this technique did not have an
adverse effect on the results.
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