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The objective of this research was 10 investigate the Jeasibility of monitoring sensor accuracy using Principal
Component Analysis (PCA). The specific project was to develop and test a monitoring scheme for the pressure-
based transmitters associated with an operational CANDU® nuclear generating station. The results of the research
indicate that individual groups of redundant sensors can be adequately monitored using PCA models with one to
four principal components. These models can generate warning alarms for errors of small magnitude and action
alarms for large magnitude errors.

1. INTRODUCTION

The instrumentation used to measure the process variables related to the CANDU safety shutdown systems must
maintain a high degree of accuracy. Usually, the correct operation of the transmitters used to measure the process
variables will be verified by process trip tests and visual panel checks. While both of these methods verify that the
transmitters are working, they are not always sufficiently sensitive to determine if the transmitters are meeting their
accuracy requirements [1]. Ordinarily, transmitter accuracy is verified by off-line recalibration. For CANDU safety
systems, recalibrations are done every one to three years. However, recalibrations have disadvantages in terms of
both increased maintenance costs when a recalibration is in fact unneeded and potential for transmitter drift outside
the allowed calibration range in periods between scheduled recalibrations. It would be desirable to do the
calibrations only when they are required, as indicated by an on-line instrumentation monitoring system.

Much work has been completed in the area of on-line instrumentation monitoring {1,2,3]. One technique for
monitoring the overall process which is becoming increasingly popular in the chemical industry is the use of
multivariate statistical methods for Statistical Process Control (SPC) [4,5]. These techniques involve setting up
control charts with limits based on the natural or inherent variability in the process. The goal of the control chart is 10
minimize the number of Type I errors (false alarms, nuisance alarms, etc.) while detecting actual process faults as
quickly as possible. A Type I error is said to have occurred if the control chart indicates there is a fault present when
in actual fact there is no fault present. If the control charts actually misses an actual fault, a Type II error is said to
have occurred. The multivariate statistical methods most commonly used are the projection methods of Principal
Component Analysis (PCA) or Partial Least Squares (PLS). These projection methods can be used to reduce the
dimension of the problem. This is a desirable feature for two reasons. First, the introduction of computers and
sophisticated, high speed data acquisition systems has lead to the very frequent measurement of hundreds of process
variables. This large amount of data can very quickly become overwhelming. Second, all the measured variables are
not independent. Typically, there are only a few underlying events driving the process and each measured variable
gives a little different information on the events. This causes the rank of the data matrix to be less than the number of
variables and causes computational difficulties if traditional muitivariate approaches are used.
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The purpose of this project was to investigate the use of PCA, within a SPC monitoring methodology, to detect faults
in the pressure-based transmitters associated with the two shutdown systems in a CANDU reactor. AECL is
currently investigating this problem using other statistical techniques [1, 6]. The paper will discuss both the
development of a monitoring methodology using PCA and an initial sensitivity analysis. Section 2 will provide a
description PCA and the monitoring methodology. Section 3 will outline the requirements of the monitoring system
and describe the data used for the project. Section 4 will present the results of the analysis and Section 5 will present
some conclusions and possible areas for future work.

2. PROCESS MONITORING USING PCA
2.1 PCA

A description of PCA was presented at the 1996 Annual CNS conference (7). The analysis will be briefly reviewed
here. PCA is a technique for transforming a group of correlated variables via linear combinations of the original
variables into a new group of uncorrelated variables. PCA can also be used to reduce the dimension of a data matrix.
Geometrically, this represents a rotation of the principal axis system, as shown in Figure 1 for a simple three
dimensional problem. As observed in Figure 1, the first principal component is in a direction such that it explains the
maximum amount of variation in the original data set with a linear combination of the original variables. The second
principal component explains the next largest amount of the variation with a linear combination subject to the
condition it is orthogonal to the first principal component.

For systems larger than three dimensions, a geometrical interpretation is difficult to do. However, the system can be
described in a manner shown in Figure 2. Two terms commonly used with PCA are loadings and scores. These
vectors are shown in Figure 2. The a™ loading vector defines the direction of the a® principal component with respect
to each of the original coordinate axis. The size of each element in the a™ loading vector shows the relative
importance of the associated original variable to the a™ principal component. The first score vector, t,, is the linear
combination of the first loading vector and the X matrix, that is,

1, = Xp, (1)
The first score vector represents the location of the individual observations on the first principal component. The a®
score vector is calculated and interpreted in a similar manner. There are as many loading and score vectors as there
are original variabies in the data matrix X. It can be shown that first loading vector is the eigenvector associated with
the largest eigenvalue of the covariance matrix of X. The second loading vector is the eigenvector associated with
the next largest eigenvatue and so on. It can also be shown that the eigenvalues are the variances of the
corresponding score vectors. If the sum of the variances of all the variables is used as a measure of the overall
variability of the data set, the eigenvalues may be used to calculate the amount of variability explained by the
principal component. For example, the ratio of the first or largest eigenvalue over the sum of all the eigenvalues will
be the fraction of the variability explained by the first principal component.

PCA is scale-dependent, meaning that the contribution to the total variance of a data set for a specific variable is a
function of the units of measurement of that variable [5]. In order not to have one variable dominate the analysis due
to its large variance, the variables must be scaled in some meaningful way. Typically, the starting place for scaling is
to mean-center and auto-scale the data. Auto-scaling means dividing each observation for each variable by the
standard deviation of the variable. Hence, each variable has unit variance. This is the form of scaling used for this
project.

2.2 Process Monitoring

The general monitoring method of SPC is as follows. First, historical data is collected from the process when it is
operating normally. It is important at this step to remove any data which represent faults that should be detected in
the future. Therefore, the data used to develop the monitoring scheme should contain only inherent variability. Next,
a statistical model is developed which accurately describes this process data. Finally, new data can be compared to
the model to determine if the process is continuing to operate normally or if there is a fault present. When SPC was




first being developed in the 1930’s, typically, there were very few measured variables and hence it was possible to
track the variables individually. That is, there would be one statistical model for each variable. However, as the
number of measured variables increases into the hundreds, tracking individual variables can become an
overwhelming task. Also, if the variables are correlated, the individual control charts may miss process fauits which
effect this correlation. Methods for combining the univariate schemes into multivariate schemes have been
developed. However, these schemes involve inverting the covariance matrix of the data set. If the variables are
highly correlated, this matrix can be singular or highly ill-conditioned. One way to overcome this difficulty is to
reduce the dimensionality of the data matrix using PCA.

2.3 PCA Model Development

By rearranging equation 1, the PCA model using all the principal components can be written as:
X =TpPT 2

where: X - historical data set containing only inherent variability
If X contains many highly correlated variables, usually the first few principals will explain most of the significant
variability in the system. They will be characterized by large, well separated eigenvalues and represent variability
which can be attributed to natural correlations present in the data. These principal components should be retained in
the model for monitoring purposes. The remaining principal components can be discarded. Therefore, the PCA

model can be written as:
A k
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As seen from equation 3, the X matrix is broken down into a prediction, X , using the “A” principal components
retained in the model and a residual error. Development of the PCA model involves determining two items; the
number of principal components to be retained and the loadings associated with each retained principal component.
There are several statistical tests which can be used to determine the aumber of principal components to retain. They
il include plotting the eigenvalues, evaluating the size of the eigenvalues or cross-validation {8]. The loadings can be
calculated sequentially by using the NIPALS algorithm [9].

1e 2.4 Process Monitoring With PCA

Once a PCA model has been developed from historical data, it can be used to monitor the process for future faults. In
order to do this, two items must be monitored; the scores retained in the model and the error between the model and
the new observation. This is done by calculating the following quantities:

1. Calculate the scores (;’s) for of the each principal components, as follows:
fori=1: A

o =pf *Xnew (4)
Xnew = Xpew — i pa
NEW NEw ~ L P

«, . end
) & 2. Calculate the Squared Prediction Error between the model and the new observation, as follows:




A
SPE =| Xyew ~ ElipiT (5)
i=1

Referring again to Figure 1, which represents the case where there are 3 variables in the X matrix, it is noted that
when two principal components are used in the model, they represent a plane. The SPE represents the distance from
the new observation to the plane. This is also shown in Figure 1. Control limits for both the individual scores and the
SPE can be calculated from the historical data set [4]. If the new observation represents normal operating data, all
the scores and the SPE will remain below their control limits. If the new observation represents an event that was not
included in the historical data set, the correlations between the variables will be changed and the covariance structure
will be changed. This will cause the new observation to move further away from the plane than normal and will be
detected by a high SPE value. If the new observation represents an event which causes larger than normal variations
in the principal components used in the model but the basic correlations between the variables does not change, it
will be detected in a shift in the scores. These points will be expanded on in the Section 4.

3.0 PROJECT DATA AND GUIDELINES

As stated in the introduction, the purpose of this project was to investigate the detection of faults in pressure-based
transmitters using process monitoring methods based on PCA. Two items were required before the investigation
could begin; data and guidelines for the types and magnitudes of faults to be detected. The data used for this project
included the measured variables associated with the two shutdown systems of a CANDU nuclear generating station.
These variables are summarized in Table 1. As observed from Table 1, there were 12 variables in redundant groups
of either 3 or 6 for a total of 60 signals. Ten days of steady state data was acquired from an operational reactor at
approximately 2 second intervals.

In order to detect pressure transmitter faults, a monitoring system should be sensitive to small offsets, drifts,
intermediate errors and spiking in sensor outputs. A monitoring scheme should aiso be able to detect signals which
are noisier than normal or lagging in their response to an actual transient. Of these six failures, an offset error is the
easiest to use for testing the sensitivity of the monitoring program. The magnitude of the offset error which should be
detected by the monitoring scheme can be based on the quantization level of the transmitter. Here, the quantization
level is considered to be the minimum interval between two adjacent digital values. For the initial sensitivity
analysis, it was decided that the monitoring scheme should be able to detect offsets of greater than one quantization
level. Offsets between 1 and 5 quantization levels would be considered interesting but perhaps not very significant
and should initiate a warning alarm. Offsets larger than 5 quantization levels would be considered significant and
should initiate an action alarm to determine their root cause. These guidelines were set after consultation with AECL
{10]. It should be noted that if the data is averaged, it could be possible to detect offsets smaller than 1 quantization
level. However, offsets this small were considered insignificant and the lower limit of 1 quantization level was set.
Table 2 summarizes the quantization levels and the magnitudes of the important offsets for the 12 variables.

4.0 RESULTS

This section will describe the results from the two main steps completed for the project. These steps were the
development a of a PCA model based on historical steady state data and a sensitivity analysis.
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4.1 PCA Model Development

4.1.1 Initial Analysis.

As stated earlier, the historical data set used to develop the statistical model must contain only inherent process
variability. For this reason, data collected from an operational process typically must first be scanned for obvious
anomalies or outliers. To do this, a simple two principal component model was developed using data which was
averaged over 15 minutes. This model easily identified process trip tests which were contained in the data. The
observations associated with the process trip tests were removed from the data set. The initial model also identified
one transient which appeared to be a power transient. The observations associated with this transient were left in the
data set because small power transients are to be expected during normal. A PCA was then calculated using 3
principal components. This model was able to explain approximately 51% of the variability in the data set. However,
an initial sensitivity analysis indicated that offsets of 5 quantization levels could not be detected for the header
pressures, boiler levels, feedline pressures or flowrates. This clearly indicated that the monitoring scheme would not
meet the sensitivity requirements outlined in Table 2. In order to improve the sensitivity of the monitoring scheme, it
was decided to develop PCA models for the individual variables.

4.1.2 Individual PCA Models.

It was decided to build PCA models for the similar process variables as opposed to the individual process variables.
Therefore, individual PCA models were developed for the 6 following variables:

1. Header Pressure (12 transmitters)

2. Pressurizer Level (6 transmitters)

3. Boiler Level (23 transmitters)

4. Boiler Feedline Pressure (6 transmitters)

5. Differential Header Pressure (5 transmitters)

6. HTS Flow (6 transmitters)

It should be noted from the above list that one boiler level and one differential pressure were deleted from the data
set. The boiler level signal was deleted because it was recalibrated during the 10 day period. The differential
pressure signal was deleted due to what appeared to be excessive noise. However, the signal would still be capable of
producing a reactor trip. Also, the averaging time was reduced from 15 minutes to 3 minutes. This was doge to
decrease the time required to detect the pressure transmitter faults. A 3 minute average was found to-still reduce the
noise to an acceptable amount [11]. Table 3 summarizes the PCA modeis for each of the 6 variables listed above. In
all cases except the flowrates, the first principal component represented an average of the transmitters. This was
determined from the fact that all the weights in each of the first loading vectors were approximately the same. This
was expected as all redundant sensors were highly correlated about their mean. For the header pressures and
pressurizer levels, the first principal component represented over 95% of the variability or sum of squares in the data
set. Therefore, for these variables, one principal component was used in the model even though some of the
significance tests indicated that more than one principal component should be used. For the other variables,
additional principal components were required. For the boiler levels and differential pressures, the additional
principal components described the variability associated with correlations between groups within the variables. For
example, the loadings for the four principal componeats for the boiler levels are showan in Figure 3. As observed in
Figure 3, the loadings for the second principal component consist of large negative and positive values for boilers 2
and 3 respectively and smaller negative and positive values for boilers 6 and 7 respectively. The same general trend ,
only with the larger negative and positive values for boilers 6 and 7 is observed in the fourth principal component.
The variability explained by these principal components can be interpreted as the variability caused by levels of
boilers 2 and 3 moving in the opposite directions to each other and the levels in boilers 6 and 7 moving in opposite
directions to each other. By the same analysis, the variability explained by the third principal is the variability caused
by the levels in boilers 2 and 3 moving in opposite directions to boilers 6 and 7. This would seem to make physical
sense as boilers 2 and 3 are fed off one reactor outlet header and boilers 6 and 7 are fed off the other reactor outlet
header located on the opposite side of the reactor.




For the feedline pressures, the additional principal components explained some of the dynamics of the signals. This
was found by lagging all the signals by one time step (3 minutes). Only the feedline pressure seemed to exhibit some
time dependency in the signal. Finally, the loadings for the HTS flowrates are shown in Figure 4. Flows 1, 3,4, and 6
are highly weighted in the first PC while flows 2 and 5 are highly weighed in the second. This appears to be a result
of the suspected power transient which affect flows 1, 3, 4, and 6 but not 2 and 5. This may be a result of where the
flows are measured in the core.

4.2 Sensitivity Analysis

Using the PCA monitoring methodology, one would expect the pressure transmitter faults discussed in Section 3t0
be detected in the SPE’s. This is expected because the faults represent new events which should not be included in
the historical data set. The software used for this project automatically calculated a SPE limit based on a scaled Chi-
squared distribution {12]. However, it was suspected that this limit would be too low for this application. That is, is
was expected that there would be too many false alarms or nuisance alarms when there where no faults preseat. To
test the sensitivities of the individual PCA models, offset errors of the sizes indicated in Table 2 were added to the
data in the historical data set. Figure S shows the results for adding the warning and action offset to the Boiler 2, Ch.
D level. As observed, the original SPE limit would have caused numerous false alarms. However, if the SPE warning
limit and action limits were set at 1 and 2 respectively, there would be only two false warning alarms and no false
action alarms. Also, an offset error of 5.0 cm would easily be detected. These limits were found to be valid for ali 23
boilers levels. Using the same methodology, warning and action SPE limits were determined for all six of the
individual PCA models. They are summarized in Table 4. It should be noted that for the flowrates, only one limit
could be identified. This was due to the fact that there was not a large gap between the 1 and 5 quantization level
offset errors for the flowrates. This is highlighted in Figure 6 which shows the offset errors for HTS Flow 1, Channel
E. This offset error analysis could also be extended to the intermediate error or spike faults. As long as the
intermediate error or spike was greater than 5 quantization levels, the monitoring schemes would detect them for as
long as they were present.

In order to test the sensitivity of the PCA models to drifts, a drift of 1 quantization level per 8 hour shift was added
to all the variables measured on Ch. D and the differential pressures measured on Ch. H. The results for when the
warning and action alarms occurred are summarized in Table S. A warning or action alarm was considered present if
half of the observations over the previous 8 hours resulted in an alarm. As observed from Table 5, all the detection
times seem 1o be reasonable, that is, all the action alarms occur within two days.

Finally, in order to test the models for sensitivity to noise, normally distributed noise with a standard deviation equal
to 3 quantization levels was added to the historical data for the Ch.D sensors and the Ch.H differential pressure
sensors. The goal here was to determine if the PCA models could detect the additional noise in the sensor readings.
The results from these tests are given in Table 6. From Table 6, it is seen that warning alarms occur for
approximately 40% of the observations while action alarms occur for approximately 20% of the observations. These
results were considered marginal because it is debatable as to whether this type of noise could be picked up on
simple panel checks while only 20% on the observations indicate action should be taken.

5.0 CONCLUSIONS

The above results indicated that an on-line monitoring system for instrumentation accuracy using PCA models is
certainly promising. The six identified groups of redundant sensors can be modeled with one to 4 principal
components in each case. In all cases except flowrates, the first principal component represented an average of the
redundant seasors. The PCA models are sensitive to small offsets and drifts. The results from the sensitivity to noise
analysis are considered marginal.

While the results are promising, this project has pointed to many areas for future investigation. First, in theory, the
historical data set used to build the PCA models should be representative of the process over long periods of time. If
this is not the case, the models will begin to produce an excessive amount of false alarms when the process moves
away from this operating range. Therefore, the models should be tested with data collected in future months and




perhaps years to determine if they are still valid. Second, the models should be tested during large transients. If all
the redundant sensors move together during the transient, the t1 score, which represents the mean, should be effected
while the SPE should remain within its limits. This was partially verified on the one transient included in the
historical data set. It should be noted that the approach taken by AECL handles large transients very well [1]. Third,
a sensitivity analysis was not completed for lagging responses. Basically, the whole area of including dynamics in the
PCA models should be investigated more in-depth. Some work has been completed in this area {13] Fourth, the
limits given in Table 4 for the SPE’s are hard limits, meaning anything below the limit will not cause an alarm and
anything above the limit will. This means that the SPE could persistently be just slightly below the limit and no alarm
would occur. A much more effective method for detecting small persistent shifts would be to use a CUSUM coatrol
scheme the monitor the SPE. CUSUM control charts are a well established form of SPC. The charts cumulate
deviations from a target or desired value. Once the cumulations reach either a high or low limit, an alarm is given.
Finally, work has been completed on combining blocks of variables into one multiblock consensus PCA model [14].
This would appear to be an ideal methodology for this problem. In this case, only one PCA model would be required
instead of six individual models. Within the one CPCA model, there would be six blocks.
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Table 1
Measured Process Variables for SDS1 and SDS2

Process Variable SDS1 SDS2 Total
ChD ChE ChF | ChG | ChH | Ch]J
HT Pressure Header | (MPa) X X X X X X 6
HT Pressure Header 2 (MPa) X X X X X X 6
Pressurizer Level (m) X X X X X X 6
Boiler #2 Level (m) X X X X X X 6
Boiler #3 Level (m) X X X X X X 6
Boiler #6 Level (m) X X X X X X 6
Boiler #7 Level (m) X X X X X X 6
Boiler Feedline Pressure (MPa) X X X X X X 6
HT Flow 1 (kg/sec) X X X 3
HT Flow 2 (kg/sec) X X X 3
HDR 1-4 Differential Pressure (MPa) X X X 3
HDR 2-3 Differential Pressure (MPa) X X X 3
TOTALS 10 10 10 10 10 10 60
Table 2
Quantization Levels and Alarm Offsets
Process Variable Quantization Warning Alarm Action Alarm Offset
Level Offset
HT Pressure Header 1 10 kPa 10 kPa 50 kPa
HT Pressure Header 2 10 kPa 10 kPa 50 kPa
Pressurizer Level 1.4 cm 14 cm 7.0 cm
Boiler #2 Level 1.0cm 1.0cm 50cm
Boiler #3 Level 1.0cm 1.0 cm 5.0cm
Boiler #6 Level 1.0cm 1.0 cm 5.0cm
Boiler #7 Level 1.0cm 1.0cm 5.0cm
Boiler Feedline Pressure 6.8 kPa 6.8 kPa 34 kPa
HT Flow 1 0.027 kg/sec 0.027 ko/sec 0.135 ko/sec
HT Flow 2 0.027 kg/sec 0.027 keg/sec 0.135 kg/sec
HDR 1-4 Differential Pressure 2.7 kPa 2.7 kPa 13.5 kPa
HDR 2-3 Differential Pressure 2.7 kPa 2.7 kPa 13.5 kPa




Table 3
PCA Model Summaries
PC# Head Pres Pres Lev Boil Lev Fdli Pres Diff Pres HTS Flow
%SS | Cum | %SS ]| Cum | %SS | Cum | %SS [ Cum | %SS [ Cum | %SS | Cum
1 993 99.3 96.8 96.8 41.2 41.2 834 83.4 81.6 81.6 47.7 47.7
2 --- --- --- --- 20.7 61.9 13.6 97.0 13.7 95.3 26.4 74.1
3 --- - - --- --- 20.3 82.2 2.4 99.4 - - - - - --- ---
4 --- --- --- --- 17.2 99.4 --- --- --- --- ---
Table 4
SPE Action and Warning Limits
SPE Header Pressur. Boiler Feedline Differential Flow
Alarm Press. Level Level Press. Press. Rate
Warning 2 2 1 2 25 20
Action 5 5 2 7 120 20
Table 5
Detection Times for 1 Quantization Level per 8 Hours Drift
Process Variable Warning Alarm Detection Action Alarm Detection Time
Time (hrs) (hrs)
HT Pressure Header 1 23.5 26.4
HT Pressure Header 2 21.6 245
Pressurizer Level 27.6 38.0
Boiler #2 Level 24.7 36.9
Boiler #3 Level 29.9 38.5
Boiler #6 Level 20.8 29.7
Boiler #7 Level 21.2 30.1
Boiler Feedline Pressure 16.3 24.9
HT Flow 1 21.0 21.0
HT Flow 2 32.4 32.4
HDR 1-4 Differential Press. 19.0 37.3
HDR 2-3 Differential Press. 20.2 38.9




Table 6

Percentage of Alarms Resulting From Noise Addition

Process Variable

% Observations With Warning

9% Observations With Action

Alarms Alarms
HT Pressure Header 1 42.6 20.4
HT Pressure Header 2 44.6 22.8
Pressurizer Level 42.1 20.0
Boiler #2 Level 40.6 22.2
Boiler #3 Level 37.6 19.9
Boiler #6 Level 42.6 24.1
Boiler #7 Level 417 23.7
Boiler Feedline Pressure 64.0 38.3
HT Flow 1 32.5 32.5
HT Flow 2 34.0 34.0
HDR 1-4 Differential Press. 58.9 22.8
HDR 2-3 Differential Press. 51.5 15.3
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Figure 2

PCA Terminology
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Figure 4
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Figure 3:

SPE for Boiler 2 Level, ChD; Warning and Alarm Offset Errors Added

T 1 T T I T

5 cm Offset

Action Alarm

T T

Warning Alarm

T

—

1 cm Offset
Chi Sgq Alarm

1 1

1

1

500 1000 1500 2000 2500 3000
Observation No.

3500 4000

4500

5000




Figure 6:

SPE for Fiow 1, Ch E: Warning and Offset Errors Added
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