v ~ef Phr
COVER SHEET

THE DESIGN AND IMPLEMENTATION OF AN
OPERATOR'S PERFORMANCE SUPPORT SYSTEM

by

R. J. Wilson.
EACS - Engineering and Computing Services,
82 Rayne Avenue, OQakville, Ontario,
Canada, LL6H 1C2

A. A. Bokhari.
Department of Computer Science and Systems
McMaster University, Hamilton, Ontario,
Canada, L8S 4K1

Wm. J. Garland.
Department of Engineering Physics
McMaster University, Hamilton, Ontario,
Canada, L8S 4L7

W.F.S. Poehlman.
Department of Computer Science and Systems
McMaster University, Hamilton, Ontario,
Canada, L8S 4K1

and
- C. W. Baetsen.
Department of Engineering Physics
McMaster University, Hamilton, Ontario,
Canada, L8S 4L7

Paper Log: 092
June 1993

Camera ready summary for publication in the Book of Summaries and camera ready paper for
publication in the Proceedings of the International Nuclear Congress '93, October 3-6, 1993,
Toronto, Ontario.

THE DESIGN AND IMPLEMENTATION OF AN OPERATOR'S
PERFORMANCE SUPPORT SYSTEM

by

R. J. Wilson, EACS - Engineering and Computing Services, 82 Rayne Avenue, Oakville,
Ontario, Canada, L6H 1C2

A. A. Bokhari, Department of Computer Science and Systems, McMaster University,
Hamilton, Ontario, Canada, L8S 4K1

Wm. J. Garland, Department of Engineering Physics, McMaster University, Hamilton,
Ontario, Canada, L8S 4L7

W.F.S. Poehlman, Department of Computer Science and Systems, McMaster University,
Hamilton, Ontario, Canada, L.8S 4K1
and
C. W. Baetsen, Department of Engineering Physics, McMaster University, Hamilton,
Ontario, Canada, L8S 417

Summary
The objective of the current OPUS (Operator/User Support) System project is to produce an
intelligent performance support system for the operators and maintainers of the Central
Sampling and Condenser Leak Detection System at the Pt. Lepreau Nuclear Generating
Station in New Brunswick. The design of the OPUS system addresses issues that have been
raised in recent reviews and takes advantage of the experience that has been gained in the
area of operator support systems over recent years. The fundamental design revolves around a
user-centred concept since this will help to address one of the major shortcomings of past
designs which is lack of operator acceptance. OPUS is also an active system in that it 1s
designed to be responsive to changing circumstances. The model will eventually run on
different platforms, for both performance and geographical reasons, and is multi-tasking in
order to realize the inherent parallelism that is present. Each task is a separate software
process and, to allow for incremental growth, proactive, persistent and intelligent modules are
used. This is singularly useful in lessening the software maintenance requirements. An
anthropomorphic three level (strategic, tactical and operational) model has been adopted that
utilises the blackboard architecture. The consequential and concomitant aspects of
communication, synchronisation, and organization of the computational flow for real-time
performance create problems of their own, not least of which is the intertwined effects of
temporal and logical correctness. The communications traffic is handled both asynchronously
and synchronously and decomposed into four distinct categories. In order to develop the
concepts on a real problem, the system for sampling the secondary side chemistry at the Pt.
Lepreau Nuclear Generating Station was chosen. This phase is a single processor realisation
but it is expected to rapidly expand into a multi-processor multi-platform implementation
encompassing a number of operating systems.

THE DESIGN AND IMPLEMENTATION OF AN OPERATOR'S PERFORMANCE
SUPPORT SYSTEM

by

R. J. Wilson, EACS - Engineering and Computing Services, 82 Rayne Avenue, Qakville,
Ontario, Canada, L6H 1C2

A. A. Bokhari, Department of Computer Science and Systems, McMaster University,
Hamilton, Ontario, Canada, L8S 4K1

Wm. J. Garland, Department of Engineering Physics, McMaster University, Hamilton,
Ontario, Canada, L8S 4L7

W.F.S. Poehlman, Department of Computer Science and Systems, McMaster University,
Hamilton, Ontarie, Canada, L8S 4K1
and
C. W. Baetsen, Department of Engineering Physics, McMaster University, Hamilton,
Ontario, Canada, L8S 4L7

ABSTRACT

The objective of the current OPUS (Operator/User Support) System project is to produce an
intelligent performance support system for the operators and maintainers of the Central
Sampling and Condenser Leak Detection System at the Pt. Lepreau Nuclear Generating
Station in New Brunswick. The design of the OPUS system addresses issues that have been
raised in recent reviews and takes advantage of the experience that has been gained in the
area of operator support systems over recent years."” The fundamental design revolves around
a user-centred concept since this will help to address one of the major shortcomings of past
designs which is lack of operator acceptance. Primarily the system is an active one in the
sense that it reacts to changes in input data and undertakes circumstance sensitive tasks. The
model will eventually run on different platforms, for both performance and geographical
reasons, and is multi-tasking in order to realize the inherent parallelism that 1s present.

The contrived modularity is extremely germane to minimising code maintenance requirements.
Additionally it eases the task of code verification and provides for incremental growth and
flexibility. Asychronous communications are used to provide flexibility and to handle the
parallelism while to ensure stability periodic synchronous communication 1s imposed.

INTRODUCTION

The OPUS (Operator/User Performance Support) system is a group of interrelated computer
programs designed to assist in decision making and to monitor data on a continuing basis for
a very specific set of preenumerated procedures. An anthropomorphic approach has been
taken for two major reasons. These are to improve operator acceptance and because the
problem breaks down into naturally into three layer strategic, tactical and operational aspects.

We have named these the MANGER, SUPERVISOR, AGENT levels. In addition it is
designed to act as a test bed for a range of generic ideas.’ The model will eventually run on
different computing platforms, for both performance and geographical reasons, and is multi-
tasking in order to deal with the concurrent requirements of the problem. Each task is a
separate software process and, to allow for incremental growth, proactive, persistent and
intelligent modules are used. The consequential and concomitant aspects of communication,
synchronisation, and organization of the computational flow for real-time performance create
problems of their own, not least of which is the intertwined effects of temporal and logical
correctness. In order to address some of these, all communication is effected through the
blackboard. The communications traffic is handled both asynchronously and synchronously
and decomposed into four distinct categories.

To develop the concepts on a real problem, the system for sampling the secondary side
chemistry at the Pt. Lepreau Nuclear Generating Station in New Brunswick was chosen. The
current phase is a single processor realisation but it is expected to rapidly expand into a
multi-processor multi-platform implementation encompassing a number of operating systems.
The procedures used to define the code within the OPUS modules are found in internal
documents from the New Brunswick Electric Power Commission - Pt. Lepreau. It became
apparent early on that the nature of the problem set required parallel processing and the entry
of data at distributed locations.

Problem Description

In order to fully define the practical problem as far as the nuclear plant was concerned a
number of documents
and flow sheets for the

ANALYSER ALARM Pt. Lepreau secondary
| side chemistry were
consulted. These
BAD CHEMSTRY CONDENSER LEAK outlined procedures for
NDICATION INDICATION

dealing with the
problem of bad

[chemistry brought
CONDENSATE POLSHER ~ CONDENSATE POLSHER about by either an

ingress of cooling
water, due to a
%‘5% w condenser leak, into the
system or from some
-IE:.H—‘ other cause. The
ml LEAK LMGIE LEAK procedures for a
condenser leak as
opposed to bad
chemistry are
— The Problem Logic sufficiently different to
allow the problem to be

APPROPRIATE APPROPRIATE APPROPRIATE APPROPRIATE APPROPRIATE
ACTON ACTION ACTION ACTION ACTION

EACS rjs 993

broken down on this basis. Figure 1 shows the logic involved. It may be seen that if bad
chemistry is discovered the procedures to be followed by the maintainers is the same
regardless of the reactor power level and whether or not condensate polishing is on or off. On
the other hand if a condenser leak occurs a more complex set of decision making logic is
involved and the specific criteria for actions to be taken depend on the reactor power level
and whether the plant is undergoing startup and whether condensate polishing is on or not.
This logic is spread out over a series of individual programs that are called into action only
when required by the current situation. The secondary side system has monitoring points
where the maintainers are required to take manual grab samples both to confirm a bad
chemistry or condenser leak situation and to monitor the situation as the event continues.
Trying to execute the process in a serial fashion is impracticable because such a programme
would have to wait for the input of a grab sample. These are required only each 30 minutes
so that response to other events would be prevented. This would defeat the whole purpose.
This inherent parallelism in the problem requires that event driven programming techniques be
used.

OPUS Sys’rem

OpercTor—User Performance Suppor’r

EACS rjw 1993

Figure 2 The OPUS Multitasking Model

The OPUS System Model
For the foregoing reasons and for others that will be discussed the solution was recast
in multiplatform/multitasking terms as illustrated in figure 2. This shows how the user
interacts with OPUS. The OPUS system accepts raw plant data and supplies its appraisal of
the current situation to the user. The user in turn can request more information and investigate
the reasoning behind this assessment until satisfied. This does imply that the user have a very
clear understanding of the OPUS
system just as he does of the existing
operating manuals. OPUS does not . NO ALARM
filter data. Rather it is a reactive
system which presents the user with . ONE LEAK ALARM
the circumstance sensitive
information and reasoning processes . UNRECOGNISED ALARM

it uses in a layered and interactive

manner. A pointed out by Garland® . LEAK ASSUMED

the mental model of the plant will

differ depending on whether an . BAD CHEMISTRY
operator, engineer or technician is

using is the system. OPUS . LEAK & BAD CHEMISTRY

accommodates this by giving the
user control of how much or how
little information 1is to be displayed.
A control room operator for example
may only require summary messages of what the current situation is and whether procedures
are being followed to deal with it. A chemical maintainer on the other hand will require more
detailed information on what steps are required to be taken and should be prompted to enter
data.

Figure 3 Alarm Handling Agent. DEDUCTIONS

The hierarchical anthropomorphic design has essentially three levels:(1) strategic, which we
refer to as the MANGER level, (2) tactical, which we refer to as the SUPERVISOR level and
(3) operational which we call the AGENT level. In accordance with the user-centred approach
discussed by Garland et al’ the users of the system can interact with the different levels
depending on their needs. The core of the program revolves around a central blackboard
whose purpose is to coordinate the inter-module communication and supply data as required
to each of the system modules.

Agents have very specific and limited tasks to do. They only accept input data from the plant
and commands from their supervisors. Normally they do not communicate with other agents
or other supervisors. They do not take actions by themselves, they merely relay conclusions
back to their supervisors and display them locally as requested by the user. An example of
these conclusions is shown in figure 3 for the Alarm Handling agent.

The role of the Supervisor is more complex in that, in addition to dealing with the same
inputs as the agents, they must also deal with the deductions of the agents they are

supervising. The Supervisor also takes no actions itself but communicates its own assessment
of the situation to the Manager. In some instances this may simply be passing on the
messages from its agents.

The Manager accepts as input all the deductions from its supervisors, keeps the user informed,
accepts user commands, monitors problem solving resources, spawns or kills off tasks as
required and issues commands to its own supervisors. It is the only module that takes actions
on its own initiative since it can spawn other processes as and when needed.

The code used to construct the model is generic, only the procedural contents of the modules
are problem specific. This may be likened to using building blocks where the nature of the
code blocks may be changed without effecting other modules that are on the same level or
below them. This imparts a number of features

. modules can be run on the computing platform of choice depending on
the geographical location and/or computational requirements and tasks
can be dealt with in parallel.

. the procedural rules may be changed within a module without effecting
the others.
. the user has control in the sense that a different module(s) for different

situations can be used. For that matter, modules with differing reasoning
procedures may be used for the same situation if they are available.

. modules are only run on an "as required” basis, thereby conserving
computing resources.

The Blackboard

One of the major basic components of the overall structure is the blackboard. Essentially, the
blackboard consists of a block of global memory which is shared by a number of programs.
These programs can write to or read from the blackboard and may sometimes consist of
separate segments of knowledge called the knowledge sources. The blackboard provides a
loose coupling which makes the modules more autonomous. In theory the design allows for a
large enough number of modules (limited only by memory) to cover most situations. This
large number need not slow the completion of tasks because agents are only invoked when
they are needed and the use of a distributed architecture allows extra processes to be added as
necessary to accommodate more agents.

All communication between various modules 1s through the blackboard and can be broadly
divided into two types. The messages from individual modules to the blackboard and the
messages from the blackboard to various modules. , the first kind of messages are recetved
asynchronously by the blackboard. This asynchronism aids exploitation of any parallism that
may be present within the problem and provides the flexibility. However despite the
desirability of completely asynchronous behaviour, both Burke and Prosser® and Benveniste’
point out that it is undisciplined, potentially unstable and unpredictable. Thus the management
strategy of imposing sychronous behaviour is employed on the output side of the blackboard

to direct the problem solving effort. This ensures that all modules are processing the same set
of data and have taken into consideration any results obtained by processing of the previous
data set. However this does imply that agents finish computation before the new data set
arrives. The asychronous input messages are saved by the blackboard and are transmitted
synchronously along with a new set of data to all the modules when the new data set becomes
available. The messages for an individual module are placed in a first-in-first-out queue and
are read by the module sequentially.

Communications Types

Clearly, on a fully distributed system, communication will take place over a network using the
tools the operating system(s) provide. However the message traffic between modules and can
be decomposed quite naturally into one of four fundamental generic formats and it is only the
mode rather than the content of the messages that will change. These formats are labelled ,
DATA, COMMAND, ADMINISTRATION and DEDUCTIONS.

The DATA messages contain raw input data from the plant, that is instrument output and
plant status data such as reactor power and other operational data. The COMMAND messages
contain the instructions from higher level modules to lower ones regarding use of resources
and operating modes. The ADMINISTRATION messages contain such things as system time.
The DEDUCTIONS messages contain the conclusions that each of the modules arrives at
based on the current operating status, raw plant data and, if appropriate, deductions from other
modules.

Figure 4 shows the

modules that are AFRETRATOR
required for monitoring -
the situation under | I
normal operation. Each USER DATA
process , a Supervisor MANAGER HONT ORI
and its Agents, is ‘
concerned only with a L]
specific set of conditions BLACKBOARD | Y
and in fact does not <{DEDUCTIONS] :
know how to deal with)
events outside its own
) DATA PLANT || AarM]| NoRMAL
realm of expertise. For A%LéSEFrLTgN CONDITION || HARLING | |OFERATIONS
example the Data Y
Monitoring Supervisor t
in Figure 4, is only Tl {COMMAND-
required to deal with DATA
instrpmgnt maintenance, SE’;‘\%?N GEEIEE%OR EACS rjo 1993
monitoring for abnormal
trends (alarms) and Figure 4 Multi-Tasking Model. Normal mode

verifying that the status

of OPUS and the status of the plant is rational. Thus we have the Normal Operations agent,
the Alarm Handling agent and the Plant Condition agent all reporting to the Data Monitoring
supervisor via the blackboard. Should a Chemical upset occur, 1e bad chemistry or condenser
leak, this information is passed onto the Data Monitoring Supervisor which would inform the
Manager. It is the task of the Manager to spawn the resources that are required for the
specific event and to keep the user informed of its actions and the reasons why.

Event Generator

Since actual plant data was unavailable during the development stages of OPUS it was
necessary to construct a means for testing. The Event Generator, shown in figure 4, was built
for this purpose. The Event Generator programme consists of three basic sections: direct alarm
toggling, simple scenario and dynamic plant simulation. The programme is menu driven and it
allows the user to make a series of choices that are immediately available to the OPUS
system.

The alarm toggling section allows the user to toggle any alarm or combination of alarms on
or off. This allows verification to be performed on the logic incorporated into the various
OPUS modules that depends on analyser alarm settings. The simple scenario section provides
a selection of scenarios for a number of monitoring points. This allows verification of the
logic that depends on monitoring the trend from the Central Sampling System analysers. This
is somewhat limited in scope because only one analyser trend was used as a trigger for each
event and trends were not based on real physical processes. The dynamic plant simulation
section will be designed to overcome the above limitations in that it is intended to simulate a
condenser leak or bad chemistry scenario based on the behavioral characteristics of the
secondary side system itself. In particular this should prove valuable as a training platform for
operators and maintainers.

Current version of the OPUS

The present version of OPUS is a single processor model running under DesQview/X layered
on MS-DOS. It is currently undergoing evaluation at the Pt. Lepreau nuclear generating
station. In addition work is proceeding to expand the system into a multi-processor multi-

platform implementation encompassing a number of operating systems using the X-Windows
open standard protocol.

Conclusions

The major issues that have been raised in contemporary assessments of operator support
systems have to a large extent been addressed in the design of the OPUS system These are a
user-centred concept to aid operator acceptance, different platforms for performance and
geographical reasons, muiti-tasking to handle the parallel nature of the problem, modularity
to assist verification and code maintenance, and provide incremental growth and flexibility,
asychronous communications to provide flexibility and handle paralielism and synchronous
communication to ensure stability.

The OPUS system is currently under evaluation by the maintainers and operators of the
Central Sampling and Condenser Leak Detection System at Pt. Lepreau Nuclear Generating
Station in New Brunswick. Use of the system at Pt. Lepreau will materially effect the
ultimate conclusion with regard to the one outstanding issue, that is of operator acceptance.

Acknowledgements

The authors would like to express their appreciation for the encouragement and cooperation of
the staff at the Pt. Lepreau nuclear generating station in New Brunswick and for the financial
support of the Natural Sciences and Engineering Research Council of Canada under the
Strategic Grants Program, award number STRO118177.

References
[1] Bernard, John A., "Issues Regarding the Design and Acceptance of Intelligent Support
Systems for Reactor Operators”, IEEE Trans.Nucl.Sci., p.1549-1558(1992).

[2] Garland, Wm. J., and Poehlman, W.F.S., " Impact of Operator Aids on Human Factors
and Organizational Structure”, AECB(Atomic Energy Control Board of Canada) report, (to be
published)

[3] Garland, W.J., Poehlman, W .F.S., Wilson, R.J. and Bokhari, A A. "Towards a Generic
User Support System(GUS)", Canadian Nuclear Society Fourth International Conference on
Simulation Methods in Nuclear Engineering, June 2-4, 1993, Montreal, Quebec, Canada.

[4] Garland, Wm.J., "Dealing with Disparate Mental Models", accepted for presentation at
HCI International '93, Orlando, Florida, USA, August, 8-13, 1993.

[5] Poehlman, W.F.S., Garland, W.J., Bokhari, A.A., Wilson, R.J. and Baetsen, CW.,
"Performance Support Systems and Artificial Intelligent Considerations”, INC93 --
International Nuclear Congress 1993 , October 3-7, 1993, Toronto, Canada

[6] Burke, P., and Prosser, P., "A Distnibuted Asynchronous System for Predictive and
Reactive Scheduling”, Artificial Intelligence in Engineering, 1992, Vol.6(12), pp106-124.

[7] Benveniste, A. and Berry, G., "The Synchronous Approach to Reactive and Real-Time
Systems", Proc. IEEE, Vol.79,No.9, September 1991.

