Multitasking Strategies in Support of a

Knowledge-Based Operator Companion

A.S. Mahmoud*, Wm. J. Garland*, W.F.S. Poehlman**
*Department of Engineering Physics
**Department of Computer Science and Systems

ABSTRACT

Today’s operator, of nuclear-electric generating stations and chemical process
plants functions in a data and information rich environment. In an effort to aid
such operators, the structure of a real-time knowledge-based advisor is herein
investigated for the central sampling system at Pt. Lepreau Generating Station.
Human expertise (inherently symbolic or pattern recognition based) must be
married to the speed and pervasiveness of computerized data acquisition and
analysis which reside more in the domain of numeric processing. The schema
advanced in this proposal achieves functional and temporal abstraction by
using a tiered decomposition of the tasks, linked by real-time asynchronous
agents acting through a blackboard.

" An on-line behaviour can be achieved by developing a specific instance in
the small of functional and temporal abstraction for a real-time system using
the anthropomorphic approach of a blackboard partitioned along the lines of
manager - supervisor - technician.

Any Overhead encountered in conforming an engineering domain problem
to the suggested configuration is out-balanced by many gained advantages such
as parallel pursuit of the primitive solution segments and the capability of
changing focus of the system.

DESQView, a multitasking DOS shell provided a test platform. A prototype

system was developed to test message passing techniques and problem
decomposability.

/A

1 INTRODUCTION

Operating plants such as nuclear-electric generating stations and chemical
process plants are typically large and complex, incorporating remote and
indirect sensors. Today’s operator of such facilides function in a data and
information rich environment. Mechanisms are needed to help the operator
assess and assimilate this information to assist in the decision making process
[2]. In this regard, tedious or standardized procedures that are normally
performed by the expert operator can easily be relegated to an intelligent,
computerized agent. Under such a scheme the operator is then better able to
focus on higher level duties.

There is an expressed need for an intelligent advisor for central sampling.
New Brunswick Electric Power Commission personnel at Pt. Lepreau
Generating Station have provided the investigators with the operating manual
for the Central Sampling System for Secondary Side Chemistry. This manual
describes, among other things, how to detect and react to two separate but
related concerns: bad secondary side chemistry (which has a very detrimental
effect on the steam generators) and turbine condenser tube failure (a
mechanical event that permits the ingestion of sea water into the feedwater,
causing bad chemistry and other problems). Bad chemistry can result from
normal system transients and is not a concern if the symptoms do not persist. If
the problem persists, then the operator is to respond by derating, holding
power, shutdown, etc. as appropriate to the details of the problem, irrespective
of the cause of the chemistry problem. Leak detection initiates a separate
response, also irrespective of the chemistry problem. Timely repair is required
to minimize subsequent damage, subject to safety and cost considerations.

Much “real-time” expert system activity has focused on the electric power
plant. Such a plant process exhibits typical man-machine interaction of modem
industry and has many facets for computerized study. They include
diagnosticians [3] with novel learning techniques [4], test-beds for
numeric/symbolic coupled systems and some using progressive reasoning
techniques [5]. Most papers point to bottlenecks with respect to uncoordinated
numeric/symbolic processing of heterogencous systems (we propose a
blackboard system to accommodate intercommunication processes),
concurrency (we propose an assembly of autonomous agents, some algorithmic
and some intelligent, communicating asynchronously), and lack real-time
capability [6] (we propose a tiered structure for architectural configurations
where temporal and functional abstraction allow performance enhancements
over traditional composite systems).

All the previously mentioned systems do not deal with a continuous stream
of data. Not only must plant process analysis keep pace with a small snapshot
of information flow, as is evident above, but real systems must analyze process
behaviours with time series data which implies that the intelligent system be
responsive to information updates as well as to dynamically be capable of

changing thinking directions due to this new data. As in the instance of robotic
navigation which 1is just in its infancy, segmented thinking along a generalized
to specialized goal seeking approach must be accommodated {7]. To our own
knowledge, no system has been developed for plant process operation that
exhibits these characteristics today. Even the comprehensive work undertaken
by Ionescu and Triff [8] recognize this behaviour as a key concept but provide
only an incomplete knowledge base to explore feasibility in their Operator
Adviser Expert for a nuclear power plant.

Under such a situation, real-time response by the knowledge-based system
is mandatory. We believe that on-line behaviour can be achieved by
incorporating a tri-level configuration where, anthropomorphically:

(1) a manager addresses goals
(2) a supervisor carries out objectives, and
(3) a technician is concerned with direct implementation.

From top to bottom, this provides temporal and functional abstraction,
proceeding from slow to fast response, and from the general to the specific.
This is related to a tiered level of architectures. At the top level,
knowledge-based or symbolic processors interconnect via an intelligent
blackboard agent and at lower levels, numeric processors react in a traditional
high performance manner.

The knowledge-based system above must be constrained to operate on a
hardware platform at the PC level, but the software environment is
unconstrained. Mainly two options were considered: UNIX and DOS. UNIX is
proving inappropriate because this operating system isolates the user from the
hardware too well, making it very difficult, if not impossible, to obtain
multilevel interrupts. The focus of UNIX is to provide an efficient interactive
multiuser interface for the computer rather than providing responses to external
events through an interruptable environment. In the early experience with
UNIX, the system proved to be unwieldy when implementing message passing
mechanisms. This motivated the use of the simpler QuarterDeck DESQView
program (a DOS multitasking shell). DESQView provides a cheap, easy to
implement multitasking environment. This shell now provides convenient
testing of different configurations of the anthropomorphic model. Lessons
learned will guide future work.

2 DESCRIPTION OF DESQVIEW

2.1 DESQView a DOS-Multitasking Environmen

DESQView runs as a shell over DOS allowing compatibility with the vast
majority of DOS applications. In addition to multitasking, DESQView offers a
variety of service calls known as Application Program Interface (API). The
API services support:

1. Character-based windowing.

2. Multitasking.

3. Pointer devices (such as the mouse).
4. Timers objects.

S5. Panels.

6. Interprocess communications.

2D iew Tasks and P

A task in DESQView is a single-execution thread. A process is a virtual
machine environment that appears to a program to be a whole separate
computer. Thus a single tasked application consists of a single task (one
execution thread) within a single process (the application’s code, data and
window memory). A process can spawn a task using the function call
tsk_new(). It returns a task handler which is a unique unsigned integer that
identifies the task. Invoking tsk_new() is very similar to calling a function,
except that control returns to the caller before the subtask completes. Because a
task is defined within the parent process it has access to global variables and
structures.

Just as a task can spawn a subtask in the same process, so can a task spawn
a subtask in a different process; that is, one program can execute another
program. The API call app_start() is used. This function returns a task handler
but in contrast to zsk_new() the created subtask is completely independent and
has no access to code and data of the spawning task. They may communicate
via interprocess connections, using mailboxes.

2.3 Intertask Communication and M

For tasks within the same process, global variables can be used for
communication. To avoid data collision situations, an application may disable
DESQView’s scheduling algorithm or use semaphores.

For tasks in different processes, DESQView provides mailbox objects
which, can be used for communication. The sender task writes to the receivers
mailbox a string of characters using the API call mal write(). The receiver
uses mal_read() to read his mailbox. There are two types of message passing
techniques:

1. Passing by value: where the entire message is copied to the
destination, and

2. Passing by reference: only a pointer to the message structure is
passed to the receiver.

3 DESCRIPTION OF BLACKBOARD MODULES UNDER DESQVIEW

The proposed advisor is fashioned anthropomorphically after the typical
management structure of;

1. Manager (Planner) level:
The highest level of abstraction. It is only concerned with the
questions like: What is the problem?. Is it a leakage problem?.

2. Supervisor (Mediator) level:
It is concerned by how to solve or detect the problem.

3. Technician (Grunter) level:
This level may contain little conventional module(s) that carry out
instructions from supervisor or do data acquisition to support or
negate a hypothesis.

This is not to say that the manager does not consider HOW or has nothing
to DO, or that the other levels are equally single minded. The levels merely
state what the primary task of the various modules are. Thus, in essence, the
Central Sampling Advisor, as currently envisioned, is composed of separate
modules modelled along the lines of the above three levels.

The Manager decides what issue to look at. In this case: “Is there a leak? If
so, how big?” and “Is there a chemistry problem? If so, what action is
required?”. The manager poses the questions to the appropriate supervisors if
they exist and are not busy (on a priority interrupt basis). If a specific
supervisor is not available, then the questions can be posted to all supervisors
in the hope that one can respond. The Manager monitors its incoming mail and
reacts.

The Chemistry Supervisor responds to incoming requests (its in-basket)
and reacts by posing two questions of its own: “Is the Condensate Polisher in
service?” and “Does a transient condition exist in the plant?”. The supervisor
knows which technician can supply the answers to these questions. When the
replies are received, the supervisor invokes one of four technicians to monitor
a subset of the plant and chemistry data and to perform a fixed set of rules to
determine the course of action. The Supervisor then posts messages to the
Manager.

The Technician responds to incoming requests in a fixed manner. It needs
to gather the required data and fire the rules of its domain in a forward
chaining manner. The only difficult aspect is the time varying nature of the
data. Discussion with plant personnel revealed that, in general, it is not
necessary to retain past history. It is sufficient to look at the current data and
apply the domain rules. At the time of rule firing, flags are set to denote
significant events. Thus, for leak detection, it is sufficient to record that a leak
was detected and at what time it was detected. Subsequent analysis at a later
time will thus have the needed knowledge of the event.

To study the details of communications among various parts of the final
system, a simpler system was constructed. Although a one to one map exists
between the anthropomorphic model and the simpler system, the modules in
the simpler system perform a subset of the tasks proposed in the model. The

system was built to run under QuarterDeck DESQView multitasking shell. In
this prototype system the problem is to coordinate the activities of different
types of agents, possibly more than one copy of each, in a way to guarantee
concurrency and consistency of the actions. The prototype system consists of
three types of agents. One type of agent creates files of random numbers while
agents of a second type access these files to compute the average. The third
type of agents access the data files to compute the variance, using the
previously computed average. All agents report back with the results of their
actions to the module whose responsibility is to maintain the board. This
module is the Board Handler. Its job is to guarantee the consistency of the
results and that only one action is being done on a data file at a time.

The current version is implemented using API service routines. In
particular the RAM mailboxes, the event interrupts, and window control
facilities were used to improve the message passing mechanism as well as the
user interface. An earlier version used DOS files as a communication media.
The architecture of the current prototype is shown in Figure 3.1. It consists of
three types of modules at three different levels:

DESOView
HANDLER

MANAGER
MAIL BOX

BOARD
MAIL BOX

1

3)

[MAm]

[mam]

[van]

Agent00 Agentl0 Agent20
(mMar] (ALl [MaL]
Agent(01 Agentll Agent21
[MaTL] [MALL] [MALl
Agent02 Agentl2 Agent22
[man] EYINi [MATL]
AgentOn Agentlm Agent2k

Figure 3.1: Architecture of Second Prototype

1. MANAGER level: A manager module is responsible for spawning
other modules and sends administrative messages to these other

modules.

2. BOARD HANDLER level: A module whose job is to maintain, and
update the board. It also assigns tasks to agents.

3. Agents level: The primary task of agent modules is to carry out
instructions received from Board Handler and report back with
results.

1T AGER Modul
This module can generate the other modules one at a time by choosing the
corresponding field on the window. It can terminate or control the window of
other modules as well. This is done by sending messages to the module of
concern. More functionality will be added to this module when the real
problem is implemented.

In the current version, the MANAGER responds mainly to either user
input, through mouse or keyboard, or incoming mail messages from other
modules. Aside from these events, it is interrupted by two timer objects. The
first timer object interrupts each second to update the clock displayed in a
window. The second one checks the status of the overall system periodically. If
there is no events to look after, the MANAGER releases the time slice
allocated to it by DESQView’s multitasking scheduling algorithm.

The expert system (which is being developed and tested separately) can
finally reside in this module (or be partitioned between MANAGER and
BOARD HANDLER to avoid bottlenecks). The MANAGER can poll the
BOARD HANDLER for a report or even the complete board structure to be
examined by the expert system. Thus, according to the evaluation of the board,
new types of actions can be taken. For instance, messages could be sent to the
BOARD HANDLER to focus on a certain activity.

3.2 The BOARD HANDLER
BOARD HANDLER is the module responsible for maintaining and updating
the board structure. It is also responsible for assigning the tasks to available

agents in a way that optimizes the CPU usage and guarantees no collisions
among agents occur.

3.2.1 BOARD HANDLER Data Structures Two main data structures are the
Board list and the Agent Lists. They are both manipulated and accessed only
by this module. The Board structure holds domain information on the status of
progress and on all the partial solution segments. The Board is tailored to the
current problem, and a snapshot of it is shown Figure 3.2.

Keeping track of available agents is done through the agent lists, a
data structure shown in Figure 3.3. Since there are three types of
agents, there are three agent lists and an agent list is composed of
agent nodes. The following describes the fields in an agent node:

File Creation Action Average Action Variance Action Agenda

No. 1r chk PID Ir Val Chk PID Ir Val Chk PID
0 10 Y agn0l 9 51 N agnll 9 720 N agn22 C
1 11 Y agn02 10 50 N agnll 10 750 N agn22 C
2 11 N agn03 11 50 N agnll 10 754 Y agn22 A\’
3 11 N agn0l 11 52 N agnll 10 741 Y agn2l A%
4 11 N agn02 11 49 N agnl2 10 745 Y agn2l v
5 9 N agn02 8 53 Y agnl2 8 755 N agn22 A
6 Y agn0l 8 51 N agnl2 8 753 N agn22 C
7 13 Y agn01 12 47 N agnl2 12 743 N agn22 C
8 12 N agn03 11 50 Y agnl3 11 747 N agn2l A
9 10 N agn03 9 52 Y agnl3 9 755 N agn23 A

Figure 3.2: The Board in BOARD HANDLER module.

- Agent ID: the name of the agent.

- Mail Key: an unsigned long integer. It is the handler of the agent’s
mailbox.

- Active Flag: this flag is set to one as long as the agent is working
and is participating in the activities. When it is excluded (not to be
assigned any more tasks) this flag is set to zero.

- Total Load: an integer value indicating how many data files the
agent must work on.

- Exclusion Timer: once the agent is assigned a job, this timer is set to
the system clock reading. This timer is checked against the system
clock periodically. Since an agent is expected to finish the assigned
job and report back within a fixed time window, an agent is marked
inactive and excluded if a preset time period has elapsed without
the agent reporting to BOARD HANDLER.

- BigHead: head pointer to a list of nodes each called BigNode. Each
BigNode node corresponds to a certain time frame (or stamp) and is
the head of a load list.

- Next: it is a pointer to the next agent node.

The first interaction between the BOARD HANDLER and an agent is that
the agent declares itself by sending a declaration message “DEC”. This
message contains the necessary information to initialize an agent node in the
agent list structure.

3.2.2 BOARD HANDLER’s Main Loop This module starts by initializing
the Board structure as well as some global variables. Then it draws its window
and records its name on its mailbox. Recording the name is necessary to
prevent multiple copies of this module from existing at the same time. Finally
the module sits in a loop waiting for events to occur. It expects three types of
events: user input, an incoming mail message, or a timer interrupt. If there are

Agents | Time Stamp | 5{ Time Stamp | y{ Time Stamp

Load Load Load

Ag(?nt Name Time Out Time Out Time Out

Mail Key Next* " { Next* - [Next*

Sho'w Flag Head* N | Head* N | Head*

Active (_.l

Total Load File No File No File No

BigHead * |- Result Result Result | s

Next*] Next* Next* _‘l' Next* :1
File No:l NULL | File No
Result Result
Next* —>NULL Next* 1

i Time Stamp | 5| Time Stamp | 5oL NULL

Load Load

Agent Name| | "y oGy Time Out

Mail Key Next* " | Next* i

Shoyv Flag Head* 1 | Head* I

Active

Total I.oad File No File No

BigHead * [Result Result

Next* B Next* Next* >NULL

NULL <— File No:——I

Result
Next* [NULL

Figure 3.3: Agent List data structure.

no events to serve, it releases the time slice. Figure 3.4 depicts a flow chart of
the main loop. A global variable, TimeStamp, is incremented each iteration of
the loop.

When a mail event occurs, the BOARD HANDLER calls the
ProcessMailEvent function. In this function the following is done:

1. Incoming messages are buffered in a message list to be processed.

2. Messages are processed according to their type. This processing
may result in updating the Board structure as well as the Agent lists.

3. The board is evaluated and the required actions are recorded in an
agenda.

4. Tasks in the agenda are distributed to available active agents by
writing messages to their mailboxes.

10

Initialize Objects

Increment
Time Stam

Process
MAIL Event

Process Keyboard
entry AND respond
to user input

Release Time
Slice

Check expired
timers

Figure 3.4: BOARD HANDLER’s main loop.
3.3 Agent Modules

There are three agent code programs: agentOl.c, agentll.c, and agent2l.c.
When an agent starts its execution, first it waits for a message from the
MANAGER. This message tells it how many copies of the same type are
already running in the system. Then it declares itself to the handler via writing
its name, profession, and mailbox key in the BOARD HANDLER’s mailbox.
Afterwards, it waits for two events to occur:

- Mail event, and
- Timer event.

When a mail event occurs, it calls the ProcessMailEvent function. In this
function the following two steps are done: reading and buffering incoming
messages, and then processing them according to their context. Whereas in
case of a timer event it calls ProcessTimerEvent function. This function is

executed periodically to look after other timers that exist in the internal data
structures.

4 M. nd Error Contr
Modules across the system communicate using the message passing
mechanisms provided by the API services. The sender module creates the

message for sending, then, using the mailbox handler of the receiver, it invokes
the following function call:

11

mal_write(MailKey, MessageString, LengthOfString);

or
mal_addto(MailKey, MessageString, LengthOfString, Status);

DESQView queues messages arriving to a mailbox, without reordering,
waiting for the receiver to read them. The receiver module can test whether its
mailbox is empty or not by the following function call:

NoOfMessages = mal_sizeof(MailKey);
The receiver may use the following function to read from its mailbox:
Status = mal_read(MailKey, &MessageString, &LengthOfString);
Each incoming message consists of the following components:

1. Message string: string of consecutive bytes. The pointer passed to
the function returns with the starting address of this string.

2. Status: a one byte integer associated with each message. One can
send a NULL message with a status integer.

3. Mailbox handler of the sender: this information is available,
directly after reading the message, through the function call:

MailHandler = mal_addr(MailKey);

In the current system the message is either the contents of the string or the
status integer, but not both. Later both of them could be used to establish a
prioritized message passing mechanism. Unlike the first version of the system,
there is no need to lock the communications channel.

3.4.1 Types of Messages While Figure 3.5 shows a schematic diagram for the
kinds of messages the system modules exchange, Figure 3.6 depicts message
formats. BOARD system messages can be classified into five classes.
Administrative messages are used to control the appearance of the system
windows on the screen. They are used also to do system-house keeping. The
declaration messages are the type of messages that declare the existence of a
certain module to another module. The third category is the acknowledgement
messages group. These messages are used to implement an exchange protocol
between the two parties of the communication process (refer to the next
section). The last two groups are command messages and result messages.
Command messages are requests (for the receiver) to perform a certain action
or computational task. The receiver of a command message usually replies
with a result message indicating the outcome of the performed action (if any).

While the first three categories are problem independent, the last two are
problem specific.

3.4.2 Error Control To increase the reliability of communication channels, a
modified ARQ [10] protocol is used. Packages of messages are stamped with a

12

To BOARD HANDLER To MANAGER:
-Window Control MANAGER | -AGENT LOGOUT

To Agents:
-Position
-Terminate
To MANAGER: -Reset
-HANDLER LOGOUT -Window Control

BOARD
HANDLER

To BOARD HANDLER:
-Declaration

-Suicide/Exclude/Poll
-Acknowledgements
-Results

To Agents:
-Acknowledgements

-Terminate
-Task Assignments

Figure 3.5: Messages exchanged among modules.

time stamp, and a sender does not suspend itself waiting for an
acknowledgement. It proceeds but advances the time frame indicator to mark a
new time frame. The module keeps a copy of the messages it sent in case it is
required to resend them.

Another control mechanism is the time-out timers. A sending module
expects the a response from the receiver within a predetermined time window.
If the time-out timer expires the sender re-sends its messages. This is repeated
until the messages are acknowledged or the maximum time for keeping the
message copies has past.

4 PERFORMANCE

One goal of optimizing the system is to reduce the penalties for using message
passing and decomposing the problem. Obviously, these penalties cannot be
nil. Message passing introduces channels of communications that have to be
maintained. Furthermore, queuing and parsing messages are extra tasks to be
performed by the receiver. Coordinating among the on-going activities and
putting final pieces of the solution together is not a trivial task.

It is shown in [9] that the BOARD system can be modeled as an N-pipeline

system as shown in Figure 4.1. The turn-around time can be estimated using
the following equation:

13

1. To MANAGER module:
-AGENT LOGOUT. @
-HANDLER LOGOUT.

2. To BOARD HANDLER module:

-TS: Time stamp.

-FO: Acknowledgements: ACK & NACK.
Declarations: DEC.
Exclusion: EXC.
Result reports: FIN.
Polling:\;?)VoAK. [Ts|Fo|Fi|F [F3[F4]|
Window Control: WIN.

Suicide: SCD.

-F1: Agent type: CRT, AVG, & VAR,

-F2: File number.

-F3: Produced result or mailbox key.

-F4: Agent name.

3. To Agents:
-FO: Position on screen or EFE
Acknowledge suicide: ACKSCD.

-TS: Time stamp.

-FO: Acknowledgements: ACK, ACKD,
ACKSCD, & NACK.
Window control: WIN. I TS I FO l F1 | F2 | F3 |
Terminate: TRM.
Tasks: CRT, AVG, & VAR.

-F1: File number.

-F2: Intermediate result.

-F3: Agent name.

Figure 3.6: Message formats.
TN,) =T +M(1,T")T 4,2 + 3N1 + T voard

Where N is number of copies of each agent functioning in the system. T is the
time slice (in ticks) given to each modules. T" is the clean time without
DESQView or BOARD system overhead. M(t,T") is a constant of value 1 or 2

for the implemented problem. T, is context switch time for DESQView. T,,_,

1_)Create Compute Compute :
Data files Averages Variances |

2_)Creatc: Compute Compute [
Data files Averages Variances |

N_)Create Compute Compute |
Data files | Averages | Variance

Figure 4.1: BOARD system, N-pipelines.

14

time spent in the BOARD HANDLER module and it is almost independent of
the agents’ primary tasks.

For the current problem and implementation, 24 percentage extra time was
required to perform the problem compared to a straightforward code. Four
percent of this degradation was due to context switching in the DESQView
environment while the rest is due to the introduction of the BOARD
HANDLER stage. Message passing using DOS files was approximately four
times slower than that using API mailboxes.

5 DISCUSSION AND CONCLUSIONS

System degradation is a function of both the environment and problem
selected. In the presented problem (dealing with data files) a great percentage
of time was spent doing message passing, because the actual job to be carried
out was trivial and does not take significant time. It can be argued that the
implemented prototype deals with a semi-extreme case where the intensity of
message passing is very high. In a real situation, an agent would spend a
significant amount of its time doing its primary task and even in that case the
overhead is expected to remain almost constant since it is dominated by the
degradation which is due to the BOARD HANDLER. Hence we conclude that,
degradation in performance is not a central issue. In situations where heavy
traffic of messages start to rush into upper levels, a message overload model
would be able to filter only those that represent major or critical events.

It is true that there is an overhead due to the process of tailoring the
problem to conform with the described configuration, but there are advantages
as well. Tasks in the suggested configuration can proceed in parallel and more
control can be exercised over primitive tasks, if necessary. The fact that the
overall problem solving is pursued in parallel threads enables the system to
backtrack from a certain course of investigation in case a more critical event
appears.

DESQView is a convenient test-bed for implementing different system
configurations and for investigating ideas. In spite of its simplicity, it provides
most of the required functionality (concerning process control and
inter-process communication) provided by other operating systems but with
less complexity. Furthermore, it keeps the door open for the whole variety of
DOS tools since it is DOS compatible.

6 FUTURE DIRECTION

The intention is to continue this exploration and investigate any other possible
bottlenecks of the model. Success in this task would lead to a better
implementation of the overall problem solution. Another goal is to implement
the Secondary Side Chemistry problem (at Pt. Lepreau) as an illustration of

15

system operation. Exploring other platforms in a multi-processor environment
is also possible.

7 ACKNOWLEDGEMENTS

This work has been made possible through funding from the National Sciences
and Engineering Research Council of Canada, with further staff support from
the New Brunswick Electrical Power Commission. Special mention and thanks
go to Bryan Patterson, NB Power, for suggesting the application and for his
technical support.

REFERENCES

1. Private communication(March 21, 1991), Mr. James, M. Licensing
Assessment Officer, Radioisotope and Transportation Division, Atomic
Energy Control Board, Ottawa, Canada.

2. Olmstead, R.A., Pauksens, J., and Goodyn, J. “New Approaches to Alarm
Annunciation for Candu Power Plants” , pp.3-15:3-21, Canadian Nuclear
Society Proc. 10th Annual Conference, 1989.

3. Naito, N., Sakuma, A., Shigeno, K., and Mori, N. “A Real-time Expert
System for Nuclear Power Plant Failure Diagnosis and Operational
Guide”, Nucl.Tech., 79, pp.284-296, 1987.

4. Suzuki, J., Sueda, N., Gotoh, Y., and Kamiya, K. “Plant Control Expert
System Coping with Unforeseen Events — Model-based Reasoning using
Fuzzy Qualitative Reasoning”, pp.431-439, Proc. Third International
Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems (Sponsored by ACM), 1990.

5. Broeders, H., Bruijn, P., and Verbruggen, H. “Real-time Direct Expert
Control using Progressive Reasoning”, Eng. App. of Al, 2(2), pp.109-119,
1989.

6. Coyle, F. “Expert Systems — Ready for Real-time”, IEEE Expert, 5(4), p.12,
1990.

7. Slack, M.G. “Situationally Driven Local Navigation for Mobile Robots”,
JPL Publication #90-17, 193p, April, 1990.

8. Ionescu, D., and Trif, 1. “A Hierarchical Expert System for Computer
Process Control”, Eng. App. of Al, 1(4), pp.286-302, 1988.

9. Mahmoud, A.S. “Distributed Problem Solving in an Engineering Domain”,
Masters thesis (in preparation), Department of Engineering Physics,
McMaster University, 1992.

10. Stallings, W. “Data and Computer Communications”, Macmillan
Publishing Company, 1988.

