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ABSTRACT

Porsching’s solution algorithm for the simulation of thermalhydraulic systems is com-
pared to a new method based on the rate form of the equation of state. Both algorithms are
developed and discussed. A direct comparison is made for a simple 2 node-1 link case to
illustrate and numerically test the ideas presented.

It is shown that the final algorithms of the two methods are identical and that the rate
method is more intuitive, easy to implement and permits eigenvalue extraction. The
modelling of the nonlinear damping term was found to be important when large time steps

were taken.
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INTRODUCTION

One of the more successful algorithms for thermalhydraulic simulation is based on
the work of Porsching (PO 69, 71). This algorithm, involving the Jacobi (or derivative of the
system state matrix), is used originally in FLASH-4 (PO 69 ), and subsequently SOPHT (CH
77 ). The strength of Porsching’s approach lies in the recognition of flow as the most
important dependent parameter and, hence, its fully implicit treatment of flow. This leads to
excellent numerically stability, consistency and converge. Further, the Jacobian permits a
generalized approach to the linearization of nonlinear systems. This allows the development
of a system state matrix which contains all the system dynamics in terms of the dependent
parameters of mass, energy and flow. Back substitution finally gives a matrix rate equation
in terms of the system flow (the unknown) and the system derivatives. While this approach is
certainly a pro%ren and successful one, it has some disadvantages. First, as will be shown
later, the matrix rate equation to be solved is not in a characteristic or eigenvalue form.
Hence, it is not directly possible to extract the system eigenvalues and thus determine the
stability of a state without performing a costly time solution. Secondly, the matrix rate
equation involving the Jacobi is as complicated as it is general. The resulting expressions are
somewhat obtuse and it is difficult to obtain an intuitive feel for the system. This complexity
also hinders implementation in a simulation code and makes error tracking a tedious process.

Recently (GA86a, GA86b, SO85), work has been presented on the use of the rate form
of the equation of state. These works showed that by casting the equation of state in the form
of a rate equation rather than the normal algebraic form, the system state ﬁxatrix, can be
more logically formed of the normal conservation rate equations for mass, energy and
momentum plus the pressure rate equation. This forms the four cornerstone equations in
thermalhydraulic systems analysis (Figurel). It was found (GA86a) that the mass and
energy equations did not contribute to the eigenvalues of the system for the simple cases
studied. This agrees with the intuitive analogy of springs and masses. Further, numerical

implementation prove to be very successful, leading to roughly a factor of 10 improvement



over the algebraic form of the equation of state, largely due to the iterative nature of the
algebraic form. Incorporating the implicit pressure dependency in the numerical method also
drastically improved the numerical stability.

Since Porsching’s method also carried the pressure dependency implicitly (via the
Jacobi), the question arises as to how the Rate Form compares to Porsching’s method
Specifically, is the pressure treatment of the two methods different? If so, what are the
advantages and disadvantages of each? How do the two compare in terms of robustness, ease
of implementation, clarity, stability, etc?

To investigate these questions, the following two sections are devoted to concise but
explanatory derivations of Porsching’s method and the Rate Form. Subsequently, a numerical

test is performed on a simple system to illustrate the similarities and differences.

DERIVATION OF PORSCHING’SFORM

Following Porsching (PO71), the thermalhydraulic system equations can be written

in node-link form (see Figure 2);

Momentum:
Wi = fi (8, Py, Pj, Wi ; 1)
Enthalpy:
H H
[ )
Hi= Z .NTVWV— z MXWV+Qi.’ @
vET, v . vEL v
1 1
Mass:
o .
M = W - W (3)
1 v v
veET. vEL
1 1
where

W = mass flow rate;

P = pressure,



M = mass;

H

total enthalpy;
f = some function;
Q = heat source;
t = time;
T, = terminating node for link k;
I; = initiating node for link k;
subscripts;
i,j = node indices;
k = link index;
v = summation index;
superscript
® = g/at
These equations can be written in matrix form:
.
y=F(y), (4)

where y is the column vector:

!
by

y =1 (5)
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for the case of K links and N nodes.
An implicit solution is sought for its stability advantages over explicit methods. First,

we expand F via the Taylor series:

JF(t JF
FLY L E o %y;] + 0(At) )

n 9y

F(tn+l,yn+1) — F(tn ,yn) + At [

n

where the superscript, n, denotes some reference at iteration n and n+ 1 denotes the time of

iteration n+1. The time difference At is simply t"+1 -t

It is assumed that F contains no
explicit time dependence (i.e. terms such as at2 or bt, where a and b are constants). Rather,

the time dependency in F is through the implicit dependence of mass, energy and flow on

time. Thatis:

F(t,y) = F(y(t). ("N
Thus, in equation 6,
o &,y =0
x VLT
the implicit form for equation 4 is’ {
n+1 n
y -y +1 _n+1 (8)
— =F{t"7", ).
At Y

Substituting in the expansion of equation 6:

y = F(t", y") + Atd y, 9)
where the Jacobi is:
8 i

Y

9y, g

of of

2 2 10

%, %,

Rearranging equation 9: B
n+1 n

y=00—Atd]" FE" y = 3 1y

or



yo =y 4 At - AtJ]TURRD, ¥ (12)

or

Ay =y" T _yP = AHT - Atd)E FGR, YY) (13)
Equations 12 and 13 are the general forms for the implicit method. Note that the function, F,

is general. It is only required that it be differentiable. In practice, it is required that F be
smooth so that there are no discontinuities in J. Discontinuities tend to play havoc on the
numerical stability of simulations. For this reason, the steam tables employed in the
simulation must have continuous derivatives (see also GA 86c¢).

The Jacobi, J, is of size K + 2N by K + 2N. For practical simulations (50 or more
nodes), this gives rather large matrices to invert. To reduce the cost of inversion, Porsching
utilized the fact that flow is the major parameter and eliminated M®*! and H2*! from the
matrix equation 12 (or 13) by backsubstituting, leaving a matrix equation implicit in W, but
not in M and 8. To illustrate, consider a two node, one link case (figure 3). The governing

equations are:

Mass:
M
Mo w Dy a9
at ’ at )
Energy:
aH1 aH2
—_ = —-H /M)W, — =H/M)W, forW>0,
at 1 1 at 1 1
(15)
aHl 6H2
= = —(H/MHW , Py = (H/MOW , forWw<o.
Momentum:
w_4 (16)
L (PI—P2)—K[W|W )
State:
— : < _ (17
Pi = n(Hi, Mi’ Vi)’ i=1,2.

where V = volume.



The Jacobi for this case is:

r~

KWL T LE T Ty
L 3 i L o 9 aM1 L al 9
W H1W
—HI/MI - 0 + — 0
M1 Ml
J =
N H1W
+ Hl/Ml + — 0 - 0
M1 Ml
-1 0 0 0 0
+1 0 0 0 0
When flow reverses, the source node is 2 rather than 1, and the Jacobi becomes:
= : aP A oP A aP A aP_ "
2 4 1 2
L aH1 L aH2 oM, L a 9
H/M 0 W 0 + oY
Ty M V2
2 N12
J =
+H/M 0 kil 0 el
H /M — -
2 M2 Mg
-1 0 0 0 0
L +1 0 0 0 0

Thus, the matrix equation to be solved is:

where [I — At J]is given by:

[I - Atd] Ay = AtF(t", y™),

(18)

(19)

(13)



" A P, A P, A 9P, A P, i
1+2AtKW| - = — At = —At - = —At - — —At
L aHl L 6H L M L oM
2 1 2
W H,W
Hl/l\/I1 At 14+ —At 0 - ——Z-At 0
M1 M1
(20)
W H,W
_Hl/Ml At - —At 1 _Z—At 0
M, M2
(+ 1At 0 0 1 0
| (=DAt 0 0 0 1
and Fis: -
r- -
A P K|WIW
L'( 1_P2)— Wi
_HI/MIW
(21)
+H1/M1W
-Ww
K +W

for the case where W>0. Since the same arguments ;pply for the case where W <0, further
discussion will confine itself to the case where W>0.

Multiply through in equation 13, using equations 20 and 21, noting that:

AW,

AH,

Ay = AH2 , (22)

AM,

AM2

ol -

wve find:



A P A P, A 9P,
(1+2AtKIWDAW — — — At AH + — — AtAH, — — — AtAM
L oH, ! L &H, Z2 L M, 1
oP
92 A
+ 2 2 AtAM, = At[—(P P )-KlWIW], (23a)
L 6M2 2 L 1 2
AWH1 W AtHIWAM1 le 3
At+<1+—At)AH1———2 = At(———-—), (23b)
M M, M] M,
AWH AH AtH WAM AtH W
_ LAt W 1At+AH2+ 1 : 1_ 1 ’ (23¢)
M, M, My M,
(23d)
AW At +AM1 = —WAt,
and
(23e)
AW At +AM2 = WAt.
Thus, from equations 23d and 23e:
AM1 = = (W + AW)At (24a)
AMs = (W + AW) At (24b)
At H W/M, ~ At AW H /M, + At H, W AM /AM?
AH. =_ 1 "
1 1+W/M, At
H, ) (24c)
= ~At M(W + AW) aftersimplification.
1
and
H
— Ap L : (24d)
AH2 = AtM (W+AW) .

1
Note that mass and enthalpy“,:~ Fonserved.

We note also that the expressions for AM and AH are similar to what you would
obtain by the straightforward application of implicit forward differencing of the orginal

equations 14 and 15, i.e:
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1\1n+1_Mn Mn+1_Mn
1 1 = _Wn+1 2 2 — +Wn+1
At ’ At ’ (25)
n+1 n n+1 n+1 n n+1
At - MEH! ! At - M ! '

1 1

The only difference between equations 24 and 25 is the treatment of the H{/M; factor.
To arrive at 24c and d, the mass equations (24a and b) were used and indeed, implicit treat-
ment of M and H was used. The result (24a to d) appears explicit in M and H when compared
to equation 25. This does not mean that the Jacobi form leads to a semi-implicit method
(implicit in flow, explicit in mass and enthalpy). It means that the implicit contributions
cancel out. (Note, however, it can be shown that for the general case, Porsching’s method is
fully implicit in its treatment of the mass equation but not for the enthalpy equation.) Thus
we conclude that there is little merit in carrying the mass and enthalpy equations in implicit
form. This agrees with earlier observations (GA 86a) that the eigenvalues of a thermal-
hydraulic system are associated with the flow and pressure equations, not with the mass and
energy equations.

To finish off the derivation of Porsching’s approach, we use equations 24a to d in

equation 23a to give:

H 6P, oP P, P
A
{1+2AtK|W|+EAt2[—l< 1+—2>+( 1+-—-—%>”AW

M1 aH1 6H2 aM1 aM2
H, /3P P P oP
A A .
-—-A’c{—(P -P)-K1W|W_At—W[—l<_1+_£>+(_1+_3>l} (26)
Lt 2 L M \oH, dH, oM, &M
1 2
Setting:
H. P oP
1 1 1
C,=——+— @D
Mla 1 aM1
and
c P Py (28)
27 M eH, M
1 2 -2

we have
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A
{1 +2AtK[W| + EAtz(Cl-i-CZ)}AW

. [A A (29)
= At[ f(Pl‘Pz)“KIWM"Atf W(Cl+02)}

Of course, the general case of N nodes and K links would follow the same substitution route
with greatly increased complexity (see PO71). It is not evident from Porsching’s general
expressions that the resulting flow equations (equation 26 for the simple case of 2 nodes and 1
link) are more dependent on pressure and its derivatives (with respect to mass and energy)
than it is on the mass and the enthalpy themselves. This observation, once pointed out, is
obvious and undeniable. Yet, no existing thermalhydraulic code for system simulation takes
full advantage of this observation.

Does a formulation which contains the appropriate implicit treatment without the
large overhead of the general perturbation approach of Porsching’s method? A clue exists in

equation 17:

P=oM,H,V) 4 (17
This can be rewritten:
P aP aP
dP=—dM+ — dH + — dV. (30)
M dH av

The form of equation 30 suggests that equation (26) contains some version of the total
pressure derivative. Indeed we shall see in the next section that the rate form of the equation

of state yields the same expression as Porsching’s method, without the large overhead.

DERIVATION OF THE RATE FORM OF THE EQUATION OF STATE (from GA86a)
The determination of pressure from known values of other thermodynamic properties
is not direct since interpolation and iteration is required because the independent (known)
parameters are temperature, T, and pressure, P. Unfortunately, T and P are rarely the
independent parameters in system dynamics since the numerical solution of the conservation

equations yield mass and energy as a function of time. Hence, from the point of view of the
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equation of state, it is mass and energy which are the independent parameters.
Consequently, system codes are hampered by the form of water property data.
Consider the algebraic form:
P = n(p,h) (31)
Traditionally, an iterative scheme (such as Newton-Raphson, AG83) is used to solve
Equation 31. The value of P is initially guessed. Iteration is then performed if P fails to
satisfy a designated ‘error’ equation within a preset tolerance. At each iteration a new (and
hopefully better) approximation of P is calculated by the Newton-Raphson formula.
The designated ‘error’ equation can be either an equation expressing the error in
specific enthalpy:
erh(P) = h — hgstimaTeD (P, x) = 0, (32)
or one expressing the error in density:
erd(P) = p — pesTiMATED (P, X) =0, (33)
where x is the quality.
Hence the solving of the equation of state is reduced to the finding of the root of the
‘error’ equation.
Alternatively, a method has been developed to solve the equation of state by deriving
a rate form of Equation 31. The case of two-phase equilibrium was previously discussed
(GAS86a). It will now be summarized in the following. Subsequently, the results are quoted
for the extension to single phase and two-phase non-equilibrium fluid.

For a volume, V, of mass, M, and total energy H, we have:

M = M, + M, | (34)
H = Mghg + Mrhg, (35)

and
V = Mgvg + Mpvs. (36)

Differentiating Equation 35:



dH dh dM dh, dM,
— =M —f4+h —E4+M — +h —
dt g dt g dt fdt f dt

hA M ho\ C}’\/I

howp | IM, e W,

g aP dt g dt f 3P dt f dt

Differentiating and comJbining Equations 4 and 6, the following can be obtained:

av dM dv,

—v,— =M
dMg gy TP T dt (V—va)<
and
dv dM Mdvg
v M e
dMp  q¢ T e dy O dt (V-Mvg)<
dt V=¥, Wf_vgz

v, o
dt dt
oo
dt  dt

’

).

g>.

Substituting Equations 38 and 39 into Equation 37, and solving for dP/dt we find:

( ) + (h h dM+(h h dv
ap e Mg T et W Th )R
dat ah av, v v,
M (v —v)—g—hM——hM(—g———>—
g g fgp g gPp & 8\gP P

dh

f g
Mf(vf—vg)a—P + thE ~h

Simplifying and defining

hgvf — hfv

1 g
F2 = vg—vf,
F, = h—h,

8hg
Fa= 5 %
. ahf

5—(‘\' —y,) — —

av_ v

w g
M(_._—
71\ gp P

)

13

(37

(38)

(39)

(40)

(41)
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we have:

dM dH dVv
F +F +F,—
dP Ldt 2qr 8 gt (42)

dt MgF‘4+MfF‘5

where the F’s are smooth, slowly varying functions of pressure (SO85) only. Note that
Mg = xM and My = (1-x)M, where x which can be calculated directly from
h = H/M = xh; + (1-x)hy. This is the rate form of the Equation of State for two-phase
equilibrium fluid in terms of the extensive properties (which are obtained from the continuity
equations). This can be cast in the intensive form by substituting

H = Mh,V = Mv, My = xM, Mr = (1-x)M

to give

oM
[F(P)+F(P)h+F(P)v];+F(P) M+F(P)

dP _ (43)
dt xMF ,(P) + (1-x) MF(P) ’
But since F1(P) + Fo(P)h + F3(P)v is equal to zero by expansion, and since
v -109
T =—[xv + Q-=x)v ]2—!2
&t o2 ot £
Equation 43 can be written as
oh
= G,(P, x) + G,(P,x) — " (44)

where G;(P,x) and Go(P,x) are properties functions which only depend on pressure and
quality:

_F3(P) [xvg + (1 -x) vf]2
xF4(P) + (1 —x)Fs(P)

I

G1 P,x)

(h —h)[xv_+ (1—x)v.]?
- g f g f (45)
dh dh dv dvf
xd—P+(1 X)E (v f) [Xd_P+(1 x)—-— (h h)

WJG-21b
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F2(P)
G (P,x) =
2 XF4(P) + (1 -x) F5(P)
~ vg ~ v
dh dhf dvg dvf ’ (46)
Xd_P + (l—X)d—P (vg—vf)— XE + “"”E; (hg~hf)

The F functions are smooth, slowly varying functions of pressure provided good curve
fits are used. The latest steam tables (HA84) were used to fit saturated properties to less than
1/4% accuracy using low order polynomials and exponentials (GA86¢c). Considerable effort
was spent on obtaining accuracy and continuous derivatives over the full pressure range. The
fact that good fits are available means that the F functions are well behaved which in turn
makes the rate form of the equation of state extremely well behaved, as shown later. The G
functions are also well behaved for the same reasons.

In general, the equation of state can be written'in rate form for all situations (GA86a).

We adopt the general form:

dM dH dv dT dT
F —+F, — +F. —+M F. — +M F. —
dP_ldt 2 d¢ 3 dt v 6 ¢ 177 d¢
dt M F,+MF,
dp dh dT, dT, (47)
=G, —+G.— +G +G, — .
I dt 2 d¢ 3 dt 4 g4t

“The expressions for the F and G functions are summarized as in GA86a. These expressions
cover the full range from subcooled liquid to superheated steam.
Thus, in addition to the system conservation equations 14 to 16, we have two pressure

rate equations:

aM, 8H, |
P Ty e e e (49)
— = =G, —+G, k6 —
11 12
3 M, F,+M,F, at ot
aM, GH,
Foo—+F aM 9H
&_ 21 223t=G, ‘1+G ™y (49)
- L) T ; 22
at My F o+ M, F, at at



Substituting in equations 48 and 49 for dM/dt and dH/dt we have:

9P, . H
— = —<G . +G. )W
at ol 1i M1

6P2

at

’ ] Hl
+<G2i +G2i M_1>W

16

(50)

(51)

But Gy;" is simply 6P1/8M;, Gyo' is simply aP;/6H];, ete. Thus, we see that equations 50 and 51

can be rewritten as:

= = +QW

In matrix form, considering just the flow and pressure equations, we have:

U
— =AU, H UML)+ B
at

w 0]
u=| Py, B=|0]|,
P2 ‘oj

A AT

kw2 _2

L L

A= -C, 0 0
N 4—({§ 0 0 |

A typical implicit treatment would be:

Un+1_Un

- A(Un+1, t) Un+1 )
At

Often, to simplify, A is treated explicitly, i.e A — A (U"t). This yields:

(I - AtA)UrHl = yn

to be solved for Un+1 by matrix inversion.

(52)

(53)

(54)

(55)

(56)
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In this case, since A contains a major nonlinearity in flow (the term K|W}|), it is best to
treat it more carefully.

Consider the fully implicit form of the flow equation of (54):

Wn+1_Wn AW A
—_—_ = = ___Kan+1]Wn+1 +_(Pn+1_Pn+l)
At At L1 2

A A
— n n o pn n - n+1
= KW'+ AW|(W" + AW)+ L (P1 _Pz)" L At(Cl+Cz)W

A
= —K|W"[W” - 2K|W"| AW +0(AW?) + — (PP}

A n A (58)
- EAt(Cl+C2)W - EAt(Cl+C2)AW'

Collecting terms:

A
l1 +2K[WY At + EAtz(C1+Cz)}AW

—at| 2@ P KWIW- At W +C.) (59)
- L1 27 7L I

This is identical to equation 29 obtained from Porsching’s method.

Thus, to answer the question posed in the beginning: Yes, a formulation, which con-
tains the appropriate implicit treatment without the large overhead of Porsching’s method,
does exist. That formulation is obtained via the rate form of the equation of state. The
solution algorithm is now straight forward. All the needed partial derivatives are contained
in the coefficients, Cy and Cq, and once coded, can be used for all thermgodynamic phases,
from single phase subcooled liquid through to superheated sfeam, and for all the thermal-
hydraulic models, from the simple HEM through to the six-equation model. Case dependent
system Jacobi’s are not required. The system equations are of the simple form of 54 and the
user is free to choose from the existing spectrum of numerical schemes, depending on the
user’s needs. The next section explores a few such schemes to test the importance of implicitly

modelling the nonlinear damping term K|W]|.
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NUMERICAL TEST
Of course, the numerical treatment is not unique. Equally, for both the rate form and

Porsching’s form, equations 58 (or equivalently 26) could be solved for W21 to give:
Wn +1 _ Wn

v = _ KWW - 2K[W| (W™ T W™) + 0(aW?)

A n n A n+1
+ E(PI_P2)_ EAt(Cl+C2)W (60)
and finally:

A
[1 +2K|Wl At + L—Atz(Cl+C2)}W"H

= W'+ At 61)

A A
L (P,~P)+ KWW
If the nonlinear term, K|W| were treated explicitly, as per equation 57, this would lead to

A
[1 +ALKW| + EAt2(C1+CZ)}AW“+1

A (62)
P n —
=W+ AtL (PI_PZ)

For the sake of discussion, this method solving for W**! employing the explicit treatment of
K|W| will be called Method 1. Method 2 is that of equation 59, i.e. solving for AW with fully
implicit treatment for K|W|. Method 3 is that of equation 61, i.e. solving for W2+ ! with fully
implicit treatment for K[W|. Thus, a comparison of Methods 1 and 3 will show how sensitive
the solution is to the treatment of the nonlinear term and a comparison of Methods 2 and 3
will show the difference in solving for AW (subsequently generating W™*! from
W+l = W4+ AW) vs. solving directly for W21,

As a base run, the 2 node-link case of Figure 4 was run with a maximum At of 0.02 sec
and a tolerance requirement of 0.001 (i.e. the time step was restricted so that the maximum
fractional change in any dependent variable was limited to 0.001 of the nominal value of that
dependent variable. As shown in figure 4 (and figure §, in expanded scale}, all three methods
gave identical results. To test stability of the three algorithms, the time step was preset in a

series of runs. Time steps were set at 0.1, 0.5, 1 and 10 seconds, respectively. Figures 6
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to 9, comparing methods 2 and 3 showed identical results. We conclude that it does not matter
whether the algorithm solves for AW or for W** 1. Figures 10 to 13, comparing methods 1 and
3 show that the treatment of the nonlinear term, K|W|, does affect the solution to some degree.
The implicit treatment appears smoother in general. Both treatments are stable and
converge to the steady state at roughly the same rate.

:
!
L/ M\/&/\\w\\g\. BN

Previously (GA86D) it was noted that terms in the numerator of equations such as:

A
{1+ At KW W™+ Atf(Pl—P2)

Wn+1 — (61)

A 2
1 +2K|W| At + EM (C,+Cy

or

W"+ Até(P -P)
L 1 2

Wn +1 — (62)

{1 + K[W|At+ %At2(01+cz)}
can cause numeric instabilities if the factors involving At can go negative. Negative factors
for large At causes a flipping of sign for subsequent W’s,i.e. W21 < 0, W2*2 > 0, ete. Since
K|W| is always >0, there should be no difference in stability in equations 61 and 62 (methods

3 and 1 respectively). This was found to be true.

EIGENVALUE ANALYSIS
The eigenvalue analysis for the rate form has been presented previously (GA86a).
The analysis is straightforward since the rate form naturaily leads to the matrix system

equation which, in general, has the form
U
— =AU+B (54)
at

with a solution for constant A and B:

At
Ut =00 > e’ -A"'B. (63)

1

It is easily shown that the eigenvalues of A — Al are the eigenvalues of equation 54. Thus

system codes that are formulated based on the rate form are already in a form that permits
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the numeric calculation of eigenvalues using existing algorithms. Hence system stability is

obtainable withouteffecting a time solution.

The same cannot be said of Porsching’s method. The equation form for this method is

% = (I-atd) " R, y), (11)

which is not of the form leading to eigenvalues of dimension sec—1.

CONCLUSIONS

The comparison between Porsching’s Method and the Rate Method revealed, at least
in the simple case, that the two methods are equivalent in that the resulting time
advancement algorithms are identical. However, the comparison further revealed that the
Rate Method is more straightforward to implement. The Rate Method also permits eigenvalue
extraction whereas Porsching’s Method does not. Bot.h methods showed excellent numeric
stability, consistency and convergence. Both methods also conserved mass and enthalpy.

An interesting byproduct of the comparison was the observation that there is no need
to treat mass and enthalpy terms implicitly since the implicit contributions cancelled out.
This was observed in the simple case and it is not true in general.

The modelling of the nonlinear damping term, K|W|W, does affect the smoothness of
the solution of large time steps. Since no additional overhead is required, it is recommended

that the term be cast as K|W?+ )W +1 rather than klwojwn+1
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Figure 1. The four cornerstone equations for thermalhydraulic system
simulation and the flow of information between them.
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Figure 2. Node-link indice schema.



Parameter Node 1 Node 2

Volume (m3) 1.0 1.0
Pressure (MPa) 10.0 5.0
Mass (kg) 500.0 100.0
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Figure 3. Simple 2 node, 1 link system.

Diameter (m) 0.1
Length (m) 1.0
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FLOW VS TIME

ALL 3 METHODS - DTmax=0.02 SEC.
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Figure 4. Link flow transient for the 2 node case: Converged solution for Methods 1, 2 & 3.
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Figure 5. Link flow transient for the 2 node case: Converged solution for Methods 1, 2 & 3, expanded scale.
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FLOW VS TIME

METHOD 2 VS METHOD 3 - DT-0.1 SEC.
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Figure 6. Method 2 vs, Method 3: At:0.1 sec.
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Figure 7. Method 2 vs. Method 3: At:05 sec.
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FLOW VS TIME

METHOD 2 VS METHOD 3 - DT=10 SEC.
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Figure 8. Method 2 vs. Method 3: At=10 sec.
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Figure 9. Method 2 vs. Method 3: At:100 sec.



FLOW (KG/S)

FLOW (KG/S)

'FLOW VS TIME

METHOD 1 VS METHOD 3 - DT-01 SEC.
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Figure 10. Method 1 vs, Method 3: At=0.1 sec.

FLOW VS TIME

METHOD 1 VS METHOD 3 - DT-06 SEC.
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Figure 11. Method 1 vs. Method 3: At:05 sec.
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FLOW VS TIME

METHOD 1 VS METHOD 3 - DT-10 SEC.
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Figure 12. Method 1 vs, Method 3:At:10 sec.
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Figure 13, Method 1 vs. Method 3:Al=100 sec.



