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- ABSTRACT

In conjunction with the usual rate forms of the conservation
equations, the time derivative form of the Equation of State is investigated
from a numerical consideration point of view. Firs., the derivation of the rate
form of the Equation of State is presented. Systematic comparison between
the new method and the traditional iterative method is made by applying the
methods to a simple flow problem. The comparison is then extended to a
practical engineering problem requiring accurate prediction of pressure. The
rate method is found to be more advantageous in many aspects. It is more
intuitive for system analysis, more appropriate for eigenvalues extraction, as
well as easier to program and to implement. Numerically, the rate method is

found to be more efficient and accurate than the traditional iterative method.
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L INTRODUCTION

Presently, the conservation equations are all cast as rate equations whereas the

equation of state is typically written as an algebraic equation (Agee, 1983). This arises from
the basic assumption that, although the properties of mass, momentum and energy must be
traced or solved as a function of time and space, the corresponding local pressure is a pure
function of the local state of the fluid. Hence the equation of state is considered only as a
constitutive equation. This treatment puts the pressure determinations on the same level as
heat transfer coefficients. Although numerical solution of the resulting equation sets give
correct answers (to within the accuracy of the assumption), intuition is not generated and
time-consuming iterations mus;t be performed to get a pressure consistent with the local state
parameters. ‘

The time derivative form of the Equation of State is investigated, herein, in
conjunction with the usual rate forms of the conservation equations. This gives an equation
set with two distinct advantages over the use of algebraic form of the Equation of State
normally used.

The first advantage is that the equation set used consists of four equations for each
node or point in space, characterizing the four main actors: mass, flow, energy and pressure.
This consistent formulation permits the straight-forward extraction of the system eigen-
values (or characteristics) without having to solve the equations numerically. Theoretical
analysis of this aspect has been presented elsewhere (Garland, to be published).

The second advantage is that the rate form of the Equation of State permits the
numerical calculation of the pressure without iteration. The calculation time for the pressure
was found to be reduced by a factor of more than 20 in some cases (where the flow was rapidly
varying) and, at worst, the rate form was no slower than the algebraic form. In addition,
because the pressure can be explicitly expressed in terms of slowly varying system
parameters and flow, an implicit numeric scheme is easily formulated and coded. This paper
will concentrate on this numerical aspect of the equation of state.

In the following, the equation of state is reviewed and the rate form is developed and

assessed.

IL DERIVATION OF THE RATE FORM OF THE EQUATION OF STATE

The determination of pressure from known values of other thermodynamic properties
is not direct since interpolation and iteration is required because the independent {known)
parameters are temperature, T, and pressure, P. Unfortunately, T and P are rarely the
independent parameters in system dynamics since the numerical solution of the conservation

equations yield mass and energy as a function of time. Hence, from the point of view of the
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equation of state, it is mass and energy which are the independent parameters.

Consequently, system codes are hampered by the form of water property data.

Consider the algebraic form:
P = n(p,h) (1)

Traditionally, an iterative scheme (such as Newton-Raphson, Agee 1983) is used to

solve Equation 1. The value of P is initially guessed. Iteration is then performed if P fails to

satisfy a designated ‘error’ equation within a preset tolerance. At each iteration a new (and

hopefully better) approximation of P is calculated by the Newton-Raphson formula.

The designated ‘error’ equation can be either an equation expressing the error in

specific enthalpy:

erh(P) = h — hgstimaTep (P, ¥) =0, (2)
or one expressing the error in density:

erd(P) = p — pesTiMATED (P, X) =0, (3)

where x is the quality.
Hence the solving of the equation of state is reduced to the finding of the root of the

‘error’ equation.
Alternatively, a method has been developed to solve the equation of state by deriving

a rate form of Equation 1. The case of two-phase equilibrium was previously discussed
(Sollychin, 1985). It will now be summarized in the following. Subsequently, the results are
quoted for the extension to single phase and two-phase non-equilibrium fluid.

For a volume, V, of mass, M, and total energy H, we have:

H = Mghg + M hy, (5)
and
YV = M_g vg + Mpr vt (6)
Differentiating Equation 5:
dH dh dM dh, dM,
a2 oM —F+nh —f+M — +h —
dt g dt g dt  dt r gt
M

-t —4h —+m — T +h
g oP dt g dt f aP dt I dt

bining Equations 4 and 6, the following can be obtained:

Differentiating and com

dv dM Mdvf

v 2 _m—
aM, g "M~ e oMW (dvg d%) (8)
dt Ve~V (Vg"vf)z dt  dt /

and
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av  aMm 9%

— —_— M= ' ‘
dt vf—vg (vr_vg)2 dt dt
Substituting Equations 8 and 9 into Equation 7, and solving for dP/dt we find:
( )dH (h h )dM+(h h)dv
dp Ve~ Vo g TV T e qr - E dt
dt ah &, o, v
[M (v —v)— —h M—-—hM(——-—>_
gg fap €& ap & 8B P
oh ov av ov
_f & _ (__z s )] (10)
M, (v, vg) " + th pes thf‘ profades
Simplifying and defining
Fl = hgvf - hfvg,,
F2 = v -,
F, = h; — hg,
11
ah o, (1)
F, = P (vg—vf) s (hg-—hf) ,
ahf &V’.
F, = Y v vf)—s-l;(hg—hf),
we have:
F M +F dH +F i
dP _ 1 gt 2 dt 3 dt (12)
dt MgF4+MfF5

where the F’s are smooth, slowly varying functions of pressure (Sollychin, 1985) only. Note
that Mg = xM and Mg = (1-x)M, where x which can be calculated directly from
h = H/M = xhg + (1-x)hy. This is the rate form of the Equation of State for two-phase
equilibrium fluid in terms of the extensive properties (which are obtained from the continuity
equations). This canbe cast in the intensive form by substituting
H=MhV= Mv,’Mg =xM, Mg = (1-x)M
to give
oM oh av

4P [Fl(P) + F2(P)h + Fs(P)v] Py + F (P) P M+ Fa(P) P M

at xMF (P) + (1-x) MF ()
But since F1(P) + Fao(P)h + F3(P)vis equal to zero by expansion, and since

13)
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d
_— = — — =—{xv +(l—x)vrl2 -£
€ ot

Equation 13 can be written as

aP oh
——G(Px)——+G(Px)-— (14)
at ot
where G,(P,x) and Go(P,x) are properties functions whlch only depend on pressure and
quality:
2
. (P = —Fs('P)[xvg + (1 -—x)vf]
15T xF @)+ 1-x)F(P)
Y4
_ (hg— hf) [xvg + (1=x) 1,_] 5
T q dhy dh, dv, dvf
_t + (1 =x)— —_ — 4+ (1- h —-h
xgp OO |G [de A-xgp | (Bg=hy)
Fz(P)
G, (Px) =
2 xF ,P) + (1 =x) F(P)
T [ dn av, ' (i6)

x-&;‘-i-(l x)-—- (v v) x-—+(l x)-——- (h h)

The F functions are smooth, slowly varying functmns of pressure provxded good curve
fits are used. The latest steam tables (Haar, 1984) were used to fit saturated properties to less
than 1/4% accuracy using low order polynomials and exponentials (Garland, to be published).
Considerable effort was spent on obtaining accuracy and continuous derivatives over the full
pressure range. The fact that good fits are available means that the F functions are well
behaved which in turn makes the rate form of the equation of state extremely well behaved,
as shown later. The G functions are also well behaved for the same reasons.

In general, the equation of state can be written in rate form for all situations

(Garland, to be published). If we adopt the general form:

dM dH av dT, dT,
F.— +F, —+F, —+MF — +MF —
dP 1 dt 2 dt 3 dt v 6 dt 177 dt

i

dt M F,+MF,
dp dh dTV dT, an
=G, —+G + G +G, — :
1 dt 2 4t 3 dt 4 dt

the expressions for the F and G functions can be summarized as in Table 1. These expressions

cover the full range from subcooled liquid to superheated steam.
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Having derived the desired rate forms for the equation of state, we proceed to

illustrate the utility of the approach.

111 NUMERICAL INVESTIGATIONS: A SIMPLE CASE

The simple two-node, one-link system is (Figure 1) chosen to illustrate the
effectiveness of the rate form of the equation of state in eliminating the inner iteration loop in
T/H simulations. In general, the task is to solve the matrix equation,

oU
— =AU+B, (18)
at

over the time domain of interest. The key point that we wish to discuss is the difference in the
normal method (where U = {M;, H, W, Mo, Ho} and the rate method (where
U = {M;, H;, P1, W, Mg, Ho, Ps}). For simplicity and clarity, we first summarize work for a
fixed time step Euler integration:

Ut+1 = Ut + At{AU + B]. (19)
As we shall see, this is sufficient to generate some observations on the utility of the rate
method. These observations then guide us in the use of more complicated and efficient

algorithms.

NORMAL METHOD

The normal method obtains the value of pressure at time, t + At, from an iteration (as
discussed previously) on the equation of state using the values of mass and enthalpy at time,
t + At,i.e. the new pressure must satisfy:

Pt+4t = q(pt+At ht+at), (20)
where both p and h are pressure dependent functions. Any iteration requires a starting guess
and a feedback mechanism. Here, the starting guess for pressure is the value at time, t: Pt.
Feedback in the Newton-Raphson scheme is generated by using an older value of pressure,
Pt-At to estimate slopes. Since the slope, oh/aP, was readily available from the rate method,
we chose to use this slope to guide feedback. Thus, in the comparison of methods, we have
borrowed from the rate method to enhance the normal method. This provides a stronger test
of the rate method.

Thus we can now generate our next pressure guess from:

h* —h_,
P =P 4 == «ADJ, (21)

new guess ah/

where ADJ is an adjustment factor €(0, 1), to allow experimentation with the amount of

feedback. This iteration on pressure continues until a convergence criteria, Perr, is satisfied.
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The converged pressure is used in the outer loop in the momentum equation and the time can

be advanced one time step. Figure 2 summarizes the logic flow.

RATE METHOD
The rate method obtains the value of pressure at time, t+ At, directly from the rate
equation as is done for the conservation equations. Equation 12, gives the rate of change of
pressure which can be solved simultaneously with the conservation equations if substitutions
for dM/dt and dH/dt are made, leading to:
dU

— =AU+B, (18)
dt

where U = {M, H; P;, W, Mg, Hg, Po}.

Thus:

PL*t= P+ At{A U+ B, @2
No inner iteration is required, as shown in Figure 3.

One problem with this approach is that the pressure may drift away from a value
consistent with the mass and energy. This problem does not arise with the conservation
equations because the equations are conservative in form, by design. It is not possible to cast
the rate form of the equation of state in conservative form since pressure is simply not a
conserved property. We can surmount the drift problem by using the feedback philosophy of
the normal method. Thus the new pressure is given by: .

(h*=h_ )

calc
c'Jh/EJPi

This correction term uses only readily available information in a non-iterative manner.

*ADJ. (23)

P§+A‘= P+ At{AU+ B} +

In essence, the main effective difference between the normal and rate method is that
during the time step between t and t + At the normal method employs parameters such as
density, quality etc. derived from the pressure at time, t + At, whereas the rate form employs
parameters derived from the pressure and rate of change of pressure at time, t. The normal
method is not necessarily more accurate, it is simply forcibly implicit in its treatment of
pressure. The rate method can be implicit (as we shall see) but it need not be. Without
experimentation it is not evident whether the necessity of iteration in the normal method is
outweighed by the possible advantages of the implicit pressure treatment.

The next sections tests these issues with numerical experiments.

COMPARISON
The two node numerical case under consideration is summarized in Figure 1. Perhaps

the most startling difference between the normal and rate methods was the difference in
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programming effort. The rate form was extremely easy to implement since the equation form
is the same as the continuity equations. The normal method took roughly twice the time to
implement since separate control of the pressure logic is required. This arises directly from
the treatment of pressure in the normal method: it is the odd man out.

The second startling difference was ease of execution of the rate form compared to the
normal form. The normal form required experimentation with both the pressure convergence
tolerance, Perr, and the adjustment factor, ADJ, since the solution was sensitive to both
parameters. The rate method contains only the adjustment factor ADJ. The first few runs of
the rate method showed that since the correction term for drift (h* —hgaic)/(3h/dp) is always
several orders of magnitude below the primary update term, At{A U + B}, the solution was
not at all sensitive to the value of ADJ. Thus the rate method proved easier to program and
easier to run than the normal method.

First, we look at the number of iterations required for pressure convergence as a
function of Pe;r and ADJ for the normal method without regard to accuracy. For a At of
0.01 sec, Perr = 10-3 (fraction of the full scale pressure of 10 MPa), the effect of ADJ is seen in
Figure 4. This resultis typical: an adjustment factor of 1 gives rapid convergence (one or two
iterations) except where very large pressure changes occur. For the case of very rapid
changes, the full feedback (ADJ = 1) causes overshoot. Overall, however, the time speﬁt for
pressure calculation is about the same, independent of ADJ.

Allowing a larger pressure error had the expected result of reducing the number of
iterations needed per routine call. But choosing a smaller time step (say .001) did not have a
drastic effect on the peak interations required. The rate method, of course,.always used 1
iteration per routine call and the adjustment factor ADJ was found to be unimportant since
the drift correction factor amounted to no more than 1% of the total pressure update term.

The integrated error for both methods is shown in Figure 5. Both methods converge
rapidly to the benchmark. The value of Pe,; is not overcritical. A value of Perr consistent with
tolerances set for other simulation variables is recommended. The time spent per each itera-
tion is roughly comparable for both methods. The main difference is that the rate method
requires the evaluation of the F functions over and above the property calls common to both
methods. This minor penalty is insignificant in all cases studied since the #iter/call
dominated the calculation time.

In summary, to this point, the rate method is easier to implement, more robust and is
equal to the normal method at worst, more than 20 times faster under certain conditions. We
now look at incorporating a variable time step to see how each method compares.

Typical variable time step algorithms require some measure of the rate of change of

the main variables to guide the At choice. The matrix equation, Equation 18, provides the
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rates that we need. Since the rate method incorporated the pressure into the U vector, the
rate of change of pressure is immediately available. For the normal method, the rate of
change of pressure has to be estimated from previous history (which is no good for predicting
the onset of rapid changes) or by trial and error. The trial and error method employed here is

to calculate the At as the minimum of the time steps calculated from:
(fractional tolerance) X (scale factor for Ui)

aU.
i

ot
This restricts At so that no parameter changes more than the prescribed fraction for that

(24)

At =
i

parameter. This can be implemented in a non-iterative manner for the rate method.
However, for the normal method, the above minimum At based on U is used as the test At for

the pressure routine and the rate of change of pressure is estimated as:

t t

at At
The At is then scaled down if the pressure change is too large for that iteration. Then the new

At is tested to ensure that is indeed satisfies the pressure change limit. This iteration loop

has within it the old inner loop.

3

It is expected then, that the normal method will not perform as well as the rate

method primarily because of the "loop within a loop” inherent in the normal method as
applied to typical system simulation codes.
A number of cases were studied and the results of the normal method were compared

to the rate method. The figure of merit was chosen as

10,000
" (integrated error) X (total pressure routine time) X No. of adjustable parameters

F.O.M

Thus, an accurate, fast and robust method achieves a high figure of merit. Some results are
listed in Table 2. Derating a method with more adjustable parameters is deemed appropriate
because of the figure of merit should reflect the effort involved in using that method. On
average, about 6 runs of the normal method, with various Pe,r and ADJ were needed to scope
out the solution field compared to 1 run for the rate method. Thus the authors feel a derating
of 2 is not an inappropriate measure of robustness or effort required.

The results indicate that the rate method is a consistently better method than the
normal method in terms of numerical performance. We see no reason why this improvement
would not exist for any thermal hydraulic system in which pressure field determination is

required.

s e s e s
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Next we briefly discuss implicit numerical schemes.
Considering just the flow and pressure rate equations, we have (after substituting in

for dM/dt and dH/dt):

aw A(P P AKWW (26)
t L ! ? L Wi
and

dPl

—=_CW

dt 1

Ci>0 (27)

d)’:'2

—=+CW

t 2

Employing the fully implicit scheme, the difference equations are cast

Wt"'At__w‘ A A
t+At pt+At t+At (28)
——————— T — —P - KW W
~ =] > =T KW :
pt+at_pt
'_ij‘—t—_i _ iCiWHAt - P;.-PAL_P?; + CiWHMAt. (29)

Collecting terms and solving for the new flow:
. (30)

wttht = g +£‘- KW' At + %(cl+cz)At2}"{w‘ + % (P} — PAL)

This is the implicit time advancement algorithm employing the rate form of the
equation of state. For the normal method, pressure rate equation in term of flow (i.e.,
Equation 29) is not available to allow an implicit formulation of the pressure. Consequently,

the implicit time advancement algorithm for the normal method is:

-1
wrtot - {1 + ALK|WY } {wt + % (P§+AL _ p;*‘A‘)At (31)
To appreciate the difference between Equations 30 and 31, consider the eigenvalues and
vectors of ‘
aU(t)
T = A(U,t) U). (32)

If we assume, over the time step under consideration, that A = constant, then the

solution to Equation 32 can be written as:

N t
uw= S Uet, (33)
1=1
where U; = eigenvectors

a} = eigenvalues.

It can be shown that for explicit formalism, the numerical solution is equivalent to:
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N
ur2t= S a+aany, (34)
: 1=1
while the implicit form is:
N ¢t
Uttt = < 1

=1 (1 —q]At)

The eigenvalues can often be large and negative. Thus, at some At, the factor

{35)

(1 + a; At) can go negative in the explicit solution causing each subsequent evaluation of U to
oscillate in sign and go unstable. For the implicit method, the contributions due to large
negative eignevalues decays away as At — . Thus implict formalism tend to be very well
behaved at large time steps. Positive eigenvalues, by a similar argument pose & threat to the
implicit form. However, this is not a practical problem because a+ At is kept < <1 for
accuracy reasons. Thus, as long as the solution algorithm contains a check on the rate of
growth or decay (effectively the dominant eigenvalues) then the implicit form is well behaved.

With this digression in mind, we see that the implicit rate formalism (Equation 30)
has more of the system behaviour represented implicitly than the normal method (Equation
31). Thus, we might expect the rate from to be more stable than the normal form. Indeed, this
was found to be the case as shown in Figure 6. For a fixed and large time step (0.1 sec.) the
normal method showed the classic numerical instability due to the explicit pressur‘e
treatment. The rate form is well damped and very stable, showing that this method should

permit the user to ncalculate through" pressure spikes if they are not of interest.

Iv. NUMERICAL INVESTIGATIONS: A PRACTICAL CASE

The comparison between -the normal and rate methods is extended to a practical

application where a two-node homogeneous model is used to simulate a transient of a small
pressurizer operating at near-atmospheric pressure. The procedure is briefly described in the
following.

Figure 7 illustrates the problem. Steam and stratified liquid water in the pressurizer
are schematically shown as two control-volumes (nodes). The nodal fluids are assumed to be
at saturated two-phase conditions corresponding to the pressure at their respective control
volumes. The overall boundary conditions to the system are the steam-bleed flow at the top of
the pressurizer, the flow into and out of the pressurizer through the surge-line, heat input
from heaters at the bottom of the pressurizer and heat-loss to pressurizer wall.

The rate of change of mass, Mg in the steam control volume and Mp in the liquid

control volume, can be expressed by the following:
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S = | (36)
T ~Wsrg=Wep=Weort Wert War
and
dML
o Wer=Wer=War* Wept Wer (37)

where Wgrp is the steam bleed flow, WgrL is the surge-line flow, W¢y is the interface
condensation rate at the liquid surface separating the steam control volume from the liquid
control volume, WE; is the interface evaporation rate at the same liquid surface, W¢p is the
flow of condensate droplets (liquid phase) from the bulk of the steam control volume toward
the liquid control volume, and WgR is the rising flow of bubbles (gas phase) from the bulk of
liquid volume toward the steam volume.

The rate of change of energy in the two control volumes can be expressed by the rate of

change in the total enthalpy, Hsand Hy, in the steam and liquid control volumes respectively:

dH
s
T ~Wgrs hsr=Wep Psr=Wor Bgsr ™ Wer hoiq
(38)
+Wpg' thQ—QWS+QTR—(1 - Bl -8Qconpt Q gvpr!
and
dHL
T = ~Were Psre™Wer brig—Wer Pea* Wer Prst
(39)

+Wop Bor= Q.+ Qe = U — Bl -8Qconp+ QL pvpr!:
where hggL is the specific enthalpy of the fluid in the surge-line, hgst and hest are
respectively the saturated gas phase specific enthalpy and the saturated liquid phase specific
enthalpy in the steam control volume, hgiq and hiq are respectively the saturated gas phase
specific enthalpy and the saturated liquid phase specific enthalpy in the liquid control
volume, Qws and Qwy are the rate of heat loss to the wall in the steam control volume and in
the liquid control volume respectively, QTR is the heat transfer rate from the liquid control
volume to the steam control volume due to any temperature gradient, excluding those due to
interface evaporation and condensation; QCconD 18 the rate of energy released by the
condensing steam to both the steam and liquid control volumes during the interface condensa-
tion process and QgvpR is rate of energy absorbed by the evaporating liquid from both the
steam and liquid control volumes during the interface evaporation process. The constant, §,
represents the fraction of these energies distributed to or contributed by the liquid control
volume. The ratio & represents the portion of energy released during the interface
condensation that is lost to the wall.
The calculation of swelling and shrinking of control volumes is only done for the

liquid control volume and the volume in the steam control volumes will be related to the
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volume in the liquid control volume, V1, as:

V 7
Vs N (40)
dt dt

The swelling and shrinking of the liquid control volume as well as values of WsTR,
WsrL, Wer, Wer. Web, WEgR, Qws, QwL, QTR, QPWR, pand b are calculated using analytical or
empirical constitutive equations. The majority of these parameters depend directly or
indirectly on pressure. Any inaccurate prediction of pressure during a numerical simulation
will result in severe numerical instability. Hence the above problem is a good testing ground
for comparing the performances of the two methods.

During the test simulation, the pressurizer is initially at a quasi-steady-state. The
steam pressure is at 96.3kPa. The steam-bleed flow, WgTg, heater power Qpwr and heat
losses Qwy and Qws are at their quasi-steady values, maintaining the saturation condition of
the pressurizer. At time = 11 sec,, the steam-bleed valve is closed and WsTB drops to zero
while Qpwr is increased to a fixed value of 300 Watts. At time = 16sec., the steam-bleed
valve is reopened and its set-point set at 80 kPa.

Since the thermodynamic properties in the steam control volume and the liquid
control volume are functions of Pg and Py, (pressures of the respective control volumes), there
are seven unknowns from egns. (36), (37), (38), (39) and (40), namely: Ms, M, Hs, Hy, Vg (or
Vo), Psand Py. Adding two equations of state, one for each control volume, will complete the

equation set:

M, H
S S (41)
P. =np ,h)=r1<—,-—->
S S’s

VS MS

M, H

L L
P =np ,h)=n(—-,—> (42)
L L’L

VL ML

Both the normal iterative method and the rate method are tested to solve Equations 41 and

42. The following observations are made:

1. Using the normal method, the choice of Equation 2 or 3 as the ‘error’ equation is found
to be very important in providing a stable numerical result. At time step = 10 msec,
no complete simulation result can be generated when Equation 3 is used. An
explanation of this can be given by referring to Equation 18, which shows that
G1(P,x), or aP/ap, is proportional to the square of [x vg(P) + (1—x) v(P)]. However,

" the direction of change in the saturated gas phase specific volume with pressure is
opposite to that of saturated liquid phase specific volume:
dvgdp > 0
dvg/dp < 0

G NN AR
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Therefore, a fluctuation in the value of pressure during an iteration process will
amplify the fluctuation in the value of predicted density when the second method is
used,

2. Using Equation 2 as the ‘error’ equation, simulation results can be generated if an

error tolerance E of less than 0.2% is used. The error tolerance is defined as:

E= f\—B—S-m—h-h—Es—T) X 100%
Figure 8 shows the transient of P, and Pg for E = 0.2%. Unstable solutions result for
E higher than 0.2%. The average number of iteration is found to depend on the error
tolerance as shown in Figure 10.
3. On the other hand, the performance of the rate method is much more convincing in
both accuracy and efficiency. The transient of Py, and Pg predicted using the rate

method is shown in Figure 9.

V. DISCUSSION AND CONCLUSION

The rate form is a cogent expression of the equation of state that is distinet from the

normal algebraic form. The essential difference is that the rate form expresses the relation-

ship between the rates of change of the state variables, while the normal form relates the

static values of the state variables. Although this is stating the obvious, the change in
viewpoint is revealing. .

No barrier is perceived to applying the rate form to the multi-node/link case, to the
distributed form of the basic equations, and to eigenvalue extraction (numerical or
analytical). _

Although we have not made use of it in this work, the non-equilibrium form.
(Equation 17) is provocative. It entices one to view the non-equilibrium situation as the
essentially dynamic sitation that it is and helps to focus our attention on the thermal
relaxation. Given the temperature rate equations, the non-equilibrium situation should be
easy to incorporate without a major code rewrite.

We conclude by restating our major findings. The rate method offers many
advantages:

1) It is more intuitive for system work. It permits a proper focus on the two main actors,
flow and pressure.

2) The same form is appropriate for eigenvalue extraction as well as numerical
simulation. This extends the usefulness of coding.

3) Programs are easier to implement.
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4) Programs are more robust and require less hand holding.
5) Time step control and detection of rapid changes (like phase changes) is improved.
Overall the method is usually faster and more accurate. Time savings peaked at a

ratio of 26 for the cases considered.
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TABLE 1 Expressions for the F and G Functions in the General Form of Equation of

State.
'
. »
Funaions .
: Cuse F ¥, ¥ F, L LA F,
' oh ah ah \ éh
! v ov) 2 ) eevy o= wev) = =) =)
! # Jpv o/ aP/,," a/, v
. 2¢ non—equilibnum —lhlvv-—h‘v'l .=, hl-h' >, “' -, -
-]t -h) —-")(h -h) -—’) th —h)] ——) th -h)l
3P)1-" a)Tvl appvl 3ppvl
; éh
: e v =y — & —v)
: 2¢ equilibrium » s ! P s 7
: wilidenvativesalong -Ihrvl-h‘vrl Y h,—h‘ -~ i 0 0
i saturstion line) i S o —hy
| P - M
{ 14 non ~ eyuilibium | M ap) i av) al’) M ap ) o 1 . .
! S - ——] - - padd -—— =
| liquid (M, = M) vl Mkl w/ v/,
! )¢ non —equilibrium | M av') i av) ar) Mm? av) ) .
i M = il el viboy — -= - o 0
; vapour (M _=M) Vvl Mo , & , viep/,
i 3'\' dh‘.
% I¢ eguilihr:um :IT (v‘—vf) B—P- (v‘-vr)
. bquid (M.'O' -y =h v} v -y h =h 0 0
: M =M, X=0) re et e & 'w, '
=M X= ¥
| ' — by oo o
3 », .
; 1 ¢ equilibrium » & htv -v)
vupour (M =0, ~ihy =h v] v -y, h=h o, 0 o
M=0,X=1) ' * ' > - thh)
=0, et - T
re (h' h‘) 8
!
Funections
i o c, c, c, c,
) i ~Fylxy + 0 —x)v,P F, *F, (i -x)F,
- Aum
rmon—eqult xF +(-nF, *F,+0U-nF, 3F,+0-0F, xF,+0-0F,
2¢ equilibrium ~Fjixv + 0 =x)v,F F,
(aliderivativesalong £ 0 o
mturation line) sF 4 0-0F, aF +U0-0F,
1¢ non —equilibrium P ) ar ) 0 ¢
liquid (M = M) »/ w)
1¢ non —equilibrium »P ) o ) 0 o
vepour (M_=M) ®/, */,
1¢ equilibrium -F’V: F’
iquid (M_=0, — —_ 0 1]
MI=M,I=0) Fl Fs
1¢ equilibnum —F’v’ F,
vnpour(M.BO, A -F— 0 0
M'=0.!=|) Fl 4




TABLE 2

-805-

Figure of Merit Comparisons of the Normal

State for Various Convergence Criteria (Simple Case).

and Rate Forms of the Equation of

Convergence Pressure
(fraction full scale) Integral routine Relative®
Case Method Overall Pressure ADJ  error time AP* FOM*® FOM
1 Prate 001 0.5 18038 24 1 231
2 Pnorm 0.0 0.01 0.5 597.61 25 2 0.33 6.90
3 P rate 0.001 0.5 21.13 96 1 4.93
4 Pnorm 0.001 0.001 0.5 79.819 119 2 0.53 9.37
§ Pnoerm 0.001 0.00001 1 22.808 246 0.89 5.53
6 Ponorm 0.001 0.0001 1 22.781 229 -2 0.96 5.14
7 Pporm 0.001 0.001 1 22761 140 1.57 3.14
§ Pporm 0001 0.01 1 22.847 128 2 1.7 2.88
9 Prate 0.0001 0.5 0.534 736 1 2544
10 Pnorm 0.0001 -0.0001 0.5 2.2536 852 2 2.60 9.7
11 Pnorm 0.0001 0.0001 1 0.4907 894 2 11.40 2.23
* AP = # of adjustable parameters
FOM = Figure of merit
Relative FOM = (FOM for rate method)/(FOM for normal method)
Volume (m3) 1.0 1.0 Di.l.mcter (m) 0.1
Pressure (MPa) 10.0 5.0 Length (m) 1.0
Mass (kg) 500.0 100.0 { 0.001
k 1.5

AN M;ss, M AN

170
AN

o
N\ Enthalpy, Hq

o Volume, V; N

(AJLMIL/D + k)
K @ e

ZAzp

Simple 2-node, 1 link system.
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Fig. 4: Number of iterations per pressure routine call for the normal method with a
time step of 0.01 seconds and a pressure error tolerance of 0.001 of full scale (10

mPa).
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Fig. 5: Integrated flow error for the rate method and the normal method for various

fixed time steps, convergence tolerances and adjustment factors.
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Pressurizer’s pressure transient for the normal method with error tolerance of

0.2%.
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Fig. 9 Pressurizer's pressure transient for the rate method.
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Averaged number of iterations per pressure routine call for the normal method

in simulating pressurizer problem.




