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ABSTRACT
A form of the equation of state 1is
analytically derived in this paper. From this
form, the value of the time rate of change of
pressure can be solved directly, without any
iteration numerical scheme. Applications of
this non-iterative equation of state to two-
phase modelling are generally discussed.
Finally, the possibility of solving the non-
iterative equation of state simultaneously
with the governing equations and the
possibility of utilizing the equation as a

mechanism of time-step control are indicated.
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1.6 INTRODUCTION

The equation of state is an important aspect of two-phase
flow modelling. A considerable portion of simulation computer
time is devoted to the solving of the equation of state.
Unfortunately, it has not received sufficient attention in the
recent rapid development of the two-phase flow modelling. This
paper is intended to initiate a discussion on how to improve the
method of solving the equation of state, such that the efficiency
of the overall two-phase flow modelling can further be improved.

A general review on the nature of the equation of state and
existing methods of solving the equation of state is briefly
reviewed in Section 2.6. A new form of the equation of state,
from which the value of the time rate of change of pressure can
be solved directly, is analytically derived in Section 3.8. Some
comments on how the new form of the equation of state can be
applied to two-phase flow modelling is presented in Section 4.0.
A method of solving the two-phase flow model governing equations
as Qell as the equation of state simultaneously is discussed in
Section 5.6. Finally, in the same section, the possibility of
utilizing the new form of equation of state for variable time-

step control is indicated.



2.0 EQUATION OF STATE

From a thermodynamics view point, the equation of state of a
substance is a relationship between any four thermodynamic
properties of the substance, three of which are independent. An
example of the equation of state involves pressure P, volume V,
temperature T and mass of a system:

f(p,v, T,M) = 0
If any three of the four properties are fixed, the fourth is

determined.

The equation of state can also be written in a form which
depends only on the nature of the system and not on>how much of
the substance is present, hence all extensive properties are
replaced by their corresponding specific values. Thus

£(p,v,T) = @
is the specific value form of the above equation of state, where
v is the specific volume. If any two of the thermodynamic

properties are fixed, the third is determined.

In two-phase flow modelling, the equation of state is used
as a constitutive equation to supplement the calculation of the
governing equationé, which are the equations for the conservation
of mass, momentum and energy. Figure 1 is a schematic
representation of information flow among the governing equations
as well as the equation of state. Basically, the equation of

state receives information about mass M (or its change AM) and

energy E (or its change AE) as independent variables. Given the



FIGURE 1 : Schematic Of Information Flow In
Two-phase Flow Models
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value of the volume of the system under consideration, V, the
equation of state then calculates a new value of pressure P (or
AP, its increment from its previous value). For example, the

equation of state could take the form:

P = P (M,E,V)
or in specific values form:
P = P2 (¢,e)

where¢ represents mass (density p or specific volume v) and e is

the specific value of E.

The new value of P is then fed into the momentum equation,

and the numerical process is repeated for another time step.

In addition to the determination of P, the equation of state
also calculate the new value of temperature T. Values of P and T
are in turn used to calculate values of other thermodynamic
properties which do not explicitly appear in the governing
equations, but whose values are needed in further calculation.
For example, if the enthalpy equation is used as the governing
equation representing the energy, then the equation of state may
take the form:

P = P(P,h)
where h is the specific enthalpy. If, furthermore, the value of
the specific internal energy u is needed, then it can be
calculated as
u = u(pP,T)
It is noted,  however, that for a saturated fluid, the value

of the temperature fully depends on the saturation pressure.



Hence another independent parameter is needed in the above
equation. The gas phase quality x is commonly used. Thus
u = u(P,x)

Given values of pressure, temperature or quality, the
calculations of other thermodynamic properties are usually
straightforward. On the other hand, the determination of
pressure from known values of other thermodynamic properties is
not, at least in the currently adopted methods. The rest of this
paper therefore concentrates on how to predict new values of
pressure of a two-phase system as a result of changes in mass and
energy content of the system.

There are basically two forms of the equation of state:
the instantaneous form and the differential form. The former
generally takes the expression:

P = Py(dy,®,V) | (1a)
where ¢; is the mass M and ¢, represents energy (enthalpy H or
internal energy U). In terms of specific values, this is
generally expressed as:

P = Py(¢y,97) (1b)
where ¢, represent density p or specific volume v, and ¢,

represent specific enthalpy h or specific internal energy u).

The differential form of equation of state is usually

written in terms of time derivatives:

oP .1 31 3@2 oV
— = f) (=, =, )
At ot ot ot (2a)

or in specific values form:



oP 3¢ 047
-_— = 2 (=—— , — (Zb)
dt ot dt

The form chosen for a particular calculation is, of course,
situation dependent. Egn. (1) is usually used for a single
control volume, where the exchange of mass and energy with
external environment are treated as boundary conditions. In
addition to being simpler, it does not have the usual error of
numerical integration., However, the prediction of pressure is
usually less continuous in time than that determined by using
egqn. (2). On the other hand, egn. (2) is usually used in nodal
structure or differential type of calculation. It has an
advantage that it can be used as the basis for time-step control
in numerical calculation. This point will be elaborated in
Section 5.40.

Another reason for adopting the form of egn. (2) is as
follows. When the conservation of mass, energy and momentum are
written in differential or nodal forms, for example in the
solution method of Porsching et al. [1l], a pressure gradient term
in the momentum balance is required to be written at the new time
level by use of a Taylor series expansion about the old time
level. This expansion requires partial derivatives of pressure,

with respect of fluid mass, <3P >and with respect to energy,

3 4179

QP
<g—— . It is therefore natural to formulate the equation
2

of state in such a way that these partial derivatives of pressure

can be utilized:



ap_<§9> 2001 ap> d ¢,
At ¢1/¢, d¢ 26,/ ¢, dt

At present, the equation of state such as eqn. (1) and eqn.
(2) are usually solved by iterative numerical techniques. For
example, an equation of egn. (la) type could be written in the

form of:

V = ve Mg + Vg Mg (3a)
M = Mg + Mg (3b)
U = ug Mg + ug Mg (3c)

where Mg and Mg are, respectively, the mass of the liquid phase
fluid and mass of the gas phase fluid in the system. Vg and Vg
are, respectively, the saturated liquid and vapor specific
volume. ug and ug are, restively, the saturated liquid and vapor
specific internal energy. These fluid thermddynamic properties
are functions of pressure, P, only. Since values of V, M and U
are inputted into the equation of state, there are basically three
unknowns in the above set of three equations.

To initiate the iteration, a tentative valué of P is used to
estimate Mg and Mg from egn. (3a) and egn. (3b). These
approximate values of P, Mg and My are then used to estimate the
value of the internal energy from egn. (3c). The estimated value
of the internal energy is compared to the actual value of U. Any
discrepancies are fed back to the gquessing mechanism to produce
the next approximated value of P.

A similar "search and match"™ approach is also used in
solving the equation of state of the egn. (2) type. Sometimes,

more sophisticated technigues, such as the method of small

perturbation, are used. Several thermodynamic properties are



"perturbed" from their initial values by small deviations.
Partial derivatives involving these properties are then estimated
by table look-up. They are in turn used to find the approximate
value of P[2].

However, the authors believe that the use of these iterative
methods can be eliminated if the equation of state is recast,
such that the value of pressure P or the time derivative of P can
be solved directly. The time derivative form of such an equation

of state is developed in the next section.



3.¢ The Derivations of the Non-iterative Equations of State

In Time Derivative Forms

Two equations of the forms like egn. (2a) and (2b) are

analytically derived in this section. They are

oM JH oV
Fq(P) — + Fp(P) — + F3(P) —
dp Dt ot DY
Dt MgF4 (P) + MgFs (P) (5)
and P or oh
— = Gy (P,X) — + Gp(P,X) —
dt ot ot (6)

The Fj (P)'s where i=1] to 5, are functions of several
thermodynamic properties. They depend only on pressure.
Similarly, Gy (P,x) and G, (P,x) are thermodynamic functiouns
which depend only on pressure and qﬁality. When egn. (5) or eqgn.
(6) are used these functions can be determined directly, hence
eliminating iterations when solving for 9P

ot

The choice of p to represent mass in egn. (6) and the choice
of enthalpy to represent energy in egn. (3) and egn. (6) is not
unique. Similar expressions written in tefms of other parameters
(such as v and u) can be derived following the same procedure

described below.

Consider an arbitrary volume of two-phase fluid as a
thermodynamic system. It is assumed that both phase are at
saturation under a uniform saturation pressure P. The total mass

of the fluid, M, the total enthalpy in the system, H, the volume

of the system, V and the quality of the gas phase x can be
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expressed as follow:

M =M, + Mf (7)

H = Mghg + Mghg (8)

g9
where hg and hg are the specific enthalpy of the saturated gas
and saturated liquid respectively, at pressure P.
Vo= Mgvg + MgVg (9)
where Vg and vg are the speci fic volume of the saturated gas and

saturated liquid respectively, at pressure p.

M
and X = 3
M

(19)

Taking the derivatives of eqn. (7), (8) and (9) with respect

to time, give

bM i ] .
g: f Mg + Mg (11)
JH h 3 dh .
ot 9ot 99 ot
av-Mavg+1:4v+m Vf+1~71v (13)
>t 93t 99 ot £t
. ng y oM
where Mg = w— Mf =
ot t

Using the definition h = u + Pv, egn. (12) can further be

written as:

i 2%g MPan M ap+»'4
— =M, — + M. P — + Vg — u
Dt 9 ¢ 9t 99 3¢ 99
v o't Mpavf M oF
+ MqPvg, + Mg —— + MgP — + Ve —
A R Y

+ ﬁfo + MfPVf



—

Expressing dYqg _ dug
2t ar

and duf dug
2t ar

the above equation can be

dug JP dug oP
Mg(——- + vg) — + Mg (— + ve) — + M
4ap ot dp ot
. avg . Vf .
+ Megue + P(M, —= + M_v_ + Mgc=— + Mcve}
fuf f £Vf
9 ¢ 99 Jdt
OH
Jt

The last term in the left hand side of this equation can be

identified as the product of P anddV (eqn. (13). Thus:

- 11 -

dP
at
JpP
2t

re-arranged to give

ot
dug du oP
{Mq (E;_ +ovg) * Mf(-g; + ve)} 5:'
. oH ov
+Mgug+Mfuf-a—t -P;;
Multiplying egn. (11) by ug
. . oM
Mguf + Mgug = a—: ue

Substituting this in egqn. (14) yields:

dug dl.lf ap .
M (—= + V) + Mc(=— + vg)} =— + Mo(u, - ug)
9 "ap g £ ap Y 9 9 £
oH RY% oM
=— - P — - —us
Jt Jt t

The derivatives of the specific volume with respect to t in egn.

(13) can also be ~xpressed differently:

(14)

(15)
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= dvg oP

ot dp ot

o/
<

Q0
)

an de ap
ot dp dt

Egn. (11) is now multiplied by vg:

. . oM
M v + MoV T — Y
f
g 't Eoe £

The preceding equation is substituted from egn. (13) to yield

dvg . de bP .
M, == + Mg =——) — + M (v, = vg)
9 ap £ dP 9t d e £
oV oM
= e = e— Vf (16)
ot ot

Multiplying egn. (15) by (vg - vg¢) and egn. (16) by (ug—uf), and
combining them to eliminate Mg, the egn. (5) sought at the

beginning of this section is now obtained:

oM oH oV
5 Fl(P)é:+F2(P) 5—t-+F3(P)5—t—
At MgFyg (P) + MgFs(P) (5)
where Fl(P) = vf(ug-uf) - uf(vg—vf)
= hgvf - hfvg
Fo(P) = Vg = Vg
F3(P) = - (hg - hg)
Fq (P) =ti§ + vg) (vq = Vg) -Sﬁg(u - ug)
dp g’ e T TE T gy 9 E
- Jg (vg - vg) - hal: (hg - hg)

dp dap
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de de
Fg(P) = (S;- t ve) (vg - ve) - —;; (uqg - ug)
E;— (Vg - Vf) - E;" (hg - hf)

It is noted that Fy (p), i=1,5, are just some combinations
of saturated values of thermodynamic properties and hence are
dependent only on pressure. Values of Fy (P)'s for heavy water
have been calculated using correlations suggested by Firla (3).
They are shown in Fig. 2 to Fig. 6 as smooth continuous
functions of P.

Egn. (6) can be derived from egn. (3) by averaging the
thermodynamic properties in the system. The averaged specific
volume of the £fluid, v and the average specific enthalpy, h are
defined as follows:

v=x v, + (1-x) Ve

g

h = x hg + (l-x) hf

By substituting H with Mh, V with Mv, Mg with xM and Mg with

(L-x)M, egn. (5) can be written as:

oM oh v

[F1(P) + F5(P)h + Fq(P)Vv] — + Fo(P) —M + F3(P) —M

oP ' ? > dt 27 o 7o
ot XME4 (P) + (1-X)MFg (P)

However, Fl(P) + FZ(P) h + F3(P) v

= thf - hfvg + (vg-Vf) [th + (l-x)hf]
- (hg=hg) [xvg + (1-x)vgl
which can be shown to be zero.

Equation (17) is therefore written as:
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oh oV

Fy(P)-- + F3(P)--

QP ot ot
—_—= (18)

To transfer eqgn. (18) into the form of egn. (6), it is noted

that v

system,

1/P, where P is the average density of the fluid in the
hence
ov. -1 o»
dt P2 Dt
2 oP
= - [xvg + (l-x)vf] -
ot
Egn. (18) can therefore be written finally as
oP bY) oh
ot ot at (6)

where Gy (P,x) and G, (P,x) are properties functions which only

depend on pressure and quality:

~F3 (P) [xvg + (1-x)vg]?

Gl(P,X)
xFy (P) + (1-x)F5(P)
i (hg=hg) [xvg + (Lex)vg)?
dh dhe rdv dv
£ l
el (1-x) — | (vg=vg) = x— + (1-x)-£1(hg-hf)
L a ar | [ ap ar |
Fo (P)
G2 (P,X) =
XF, (P) + (l-x)Fg(P)
) Vg = Vg
f dhg dhfq [ dvg dvf]
| X=——— 4+ (l-X)— (vg—vf)-_x——- + (l=x)— (hg—hf)
L dp ap | dap 4ap J
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4.0 Application of The Non-iterative Equation of State I

Various Two-Phase Flow Modelling

Two time derivative forms of non-iterative equation of state

have been derived in the previous section:

oM oH oV
F,(P) — + F,(P) == + Fq(P) —
oP 1 ot 2 ot 3 ot
ot MgF4(P) + M¢Fg (P) (5)
and
oP P ah
_—= Gl(P,x)—— + Gz(P,X)——
ot ot ot (6)

It has been shown that egn. (5) is derived for control volume,
whose thermodynamic condition depends on values of M, H ahd V of
the system. Hence egn. (5) is suitable for two-phase flow models
with nodal formulations, in which size (volume V) and £fluid
content (mass M) of the individual node contribute to the

characteristic of the node's thermodynamic condition,

On the other hand, M and V do not appear explicitly in egn.
(6). Although egn. (6) is derived from egn. (5), no restriction
of any kind are imposed on the nature and values of M and V in
eqn. (5). Hence egn. (6) is valid for any value of M and V. It
is hereby an equation expressing a characteristic thermodynamic
property of the fluid, locally at a point in the fluid and
instantaneously at a particular time. Egn. (6) can therefore be
applied to almost any formulation of two-phase flow model,
including those with governing equations written in area-averaged
form or local instantaneous form [(4]. It is noted that egn. (5)

can not be directly applied to the later two kinds of models.



A more serious limitation of the applicability of eqgn. (5)
and (6) is on a different aspect: the inter-phase equilibrium

assumption.

This assumption therefore excludes the application of the
eqgn. (5) and egn. (6) to the UVUT mixture model, for example.
Nevertheless, they can be applied to UVET non—homogeneoug
saturation model such as that for steam generator or pressurizer
simulations.

Moreover, eqn. (6) can probably be used under certain
additional circumstances as well. For example in using the Drft-
flux model, eqgn. (6) can be used for determining pressure of the
mixture (which mainly consists of the continuum phase). The
pressure of the dispersed phase (bubbles or droplets) can be
determined by other treatment such as by assuming the mixture
pressure as its saturation pressure. Hence the dispersed phase
pressure is equal to the sum of the mixture pressure and é
correction term reflecting the pressure difference due to the

bubble or droplet's surface tension.

In the case of modelling separated flow by a non-equilibrium
two-fluid model, it is purposed to use two separate equations for
the two-phase equation of state: one for the gas phase and one
for the liquid phase. At any time step in the numerical
calculation, the steam's equation of state is set-up by setting
Mg = @ and Mg = M (if using egn. (5) or by setting x =1 (if

using egn. (6)); the liquid’'s equation of state is set-up by

having Mg = @ and Mg = Mor x = @ . At the end of the numerical
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calculation, any new quality calculated in the steam phase which
is less than unity, and any new quality calculated in the liquid
phase which is greater than zero provide some basis for the
calculations of interfacial mass and energy transport in the next

time step.

To summarize, due to vast number of two-phase flow models
available, it is impossible to common on all the possible methods
of applying egn. (5) and egn. (6) as the supplementing equation
of state. The technique of application is basically an art by
itself. The detail is up to the individual users. The only
caution has to be taken is that the saturation assumption is

deriving egn. (5) has to be taken into consideration.
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5.9 Numerical Aspects of the Application

As was mentioned in Section 2.4, that in two-phase flow
modelling, the equation of state is used to supplement the
governing equations. Conventionally, the solving of the equation
of state is pertormed separately, while the governing equations
are solved simultaneously or semi-simultaneously. In solving the
governing equations, the pressure parameter P, which is one of
the variables, is treated as a constant (or constants). The
resulting new values of mass (or density) and enthalpy )or
specific enthalpy) are fed into the equation of state, which is

then solved to give a new value of P.

A new approach of solving all the governing equations as
well as the equation of state simultaneously has been purposed
recently [5]. Basically the governing equations and the equation

of state are arranged in a matrix equation.

The following example illustrates the process. A set of
governing equation written in the local instantaneous form is used
in this example since they are mathematically simple and hence
can better illustrate the process converting the equations into a
matrix equation. A similar approach can be applied tobothez

forms of governing equations, such as the volume-averaged form or
the lumped (macroscopic) form, which are more widely used in

engineering practice.

The local instantaneous conservation equations for mass

momentum and energy can be written as:
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mass:
Py
b__._ + V(P V) = "} k =1,2 (19)
ot
momentum:
—g-t“’k Vi) + TP i Vi)t VP - BT - A9 = O
k=1,2 (20)
enthalpy:

'a"a- (pk hk) + V'(pk hk Vk) + V- qk - Vpk . vk + (V‘ Tk)o Vk = 0
t
k =1,2 (21)
Egn. (19) is rewritten by expanding the derivative in the

second term:

0Px .
t

Egn. (20) can also be rearranged by expanding the

derivatives:

2 Yk .
pk + pk Vk v Vk + Vpk - V. Tk - pkg
dt
0%k
+ vk [ — + V- (pk Vk)] =0
ot
The last term is zero according to egn. (19). Thus
bvk 1 1 -
k k k
At Py & k X
Similarly, egn. (21) can also be rearranged to:
Pk -
Py g——-+ P Vx - Vhy - Vi VP - Ve VP + V. gy + (v. 7))« Vg
t
0Pk

ot
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Substituting egn. (19) into the above equation yields:

-

bk Vk 1 _ o Yk
—-+Vthk“—'VPk=‘—qu“V- P — (24)
ot pk Pk Pk
Combining egn. (6) with eqn. (22) and (24) gives:
Pk Vi
vl Gy (Pyrxy) [=p WV = Vi UPL] + Gp(Pyyxp) [= Vi Uy + ——= VP
1 Vi
m— gy - (V. P . —]
Py Py
rearranging yields:
2%k vk
— Gz Vk th - Gz— VPk + Glpk Vvk + G]. Vk Vpk
ot Py
G VkG2
=— v.a - (v. B (25)
[ Py
Egn. (22), (23), (24) and (25) are now grouped into a matrix form:
- p - 3 1
o | Vi o, © @ | Py | o
vy 0 vV, @ 1 A 1
— — V.t 9
A P
— -_ — Vg - (V. T ==
ot Pk pk . pk
Vi G2 . %G2
Pk Gy Vk G1k G2k ~G27 Pk — V3 - VT T
Py ka Py
- e L - L o

The two phase flow problem now reduced to solving the above

matrix equation.

The possibility of reducing the two-phase flow
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problem into eigenvalue problem based on the above matrix
equation has been suggested [5].

Another consideration is the possibility of utilizing egn.
(5) or egqn. (6) for variable-time-step control purpose. In the
simulation of two-phase systems by computer code, certain
numerical instabilities can be identified by the drastic increase
of predicted value of pressure. If the instantaneous form of
equation of state (eqgn. (1)) is used in the code and when an
instability occurs, it is sometimes necessary to repeat the
simulation with smaller time-step. However, if time derivative
form of equation of state such as eqn. (5) or egn. (6) is used,
it can provide a basis for an instability prevention mechanism.
At any time during the simulation, by comparing the time rate of

change of pressure with some predetermined criteria, a potential

" instability can be forecasted. The time-step is pre-programmed

in such a way that it is automatically reduced when an
instability is forecasted. Hence the instability can be

prevented without having to repeat the simulation.
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6.0 Future Developments

It is hoped that the development of the non-iterative
equation of state presented in this paper will be a step toward
finding the most efficient equation of state in two-phase flow
modelling.

It is noted that egn. (5).and (6) can be useful only because
the properties function Fi (pP), i=1 to 5, can be calculated
directly by combining several thermodynamic properties, whose
values are conveniently given by the correlations suggested by
Firla [3]. However, errors are expected to be generated during
this two-stage calculations. This error can be minimized if
correlations of Fi(P) can be directly formulated from
thermodynamic prdperties table. This is therefore an aspeét that
will receive attention in the future.

As pointed out in Section 4.0, the detailed applications of
egn. (5) and (6) into two-phase flow modelling depend on the
nature of the model. Hopefully, the proposal presented in this
paper can be carried out by other workers who are currently
active in developing various two-phase flow models. Their
findings and experience would be highly appreciated by the

authors.
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