FIGURE 1 : SIMPLIFIED DESIGN PROCESS FLOW DIAGRAM
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FIGURE 2 : SIMPLIFIED DESIGN PROCESS
FLOW DIAGRAM WITH VERIFICATION
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DESIGN VERIFICATION METHODOLOGY (Cont'p)

FEEDBACK FROM ACTUAL NUCLEAR STATIONS DURING
COMMISSIONING AND IN-SERVICE OPERATION TO VERIFY
DESIGN CODED

- USE INFORMATION TO:

A, VERIFY THE STEADY-STATE ISOTHERMAL
HYDRAULIC MODELLING IS CORRECT.

B, SHOW THE STEADY-STATE PERFORMANCE WITH

HEAT TRANSFER IS CORRECT.

C. USE THE DETAILED RESULTS FROM THE STEADY-
STATE CODES AND MATCH THE TRANSIENT CODE
STEADY-STATE PREDICTIONS,

D. VERIFY THE TRANSIENT THERMAL HYDRAULIC
MODELLING IS CORRECT,



KEY AREAS OF DESIGN VERIFICATION

STEADY-STATE I1SOTHERMAL HYDRAULICS

- TOTAL CORE FLOW
= CHANNEL FLOW DISTRIBUTION
= ADEQUATE FUEL COOLING

STEADY~STATE HEAT TRANSFER

- TEMPERATURE/ENTHALPY DISTRIBUTION
- S/G HEAT TRANSFER
- EXTENT OF PRIMARY COOLANT BOILING

* BOILING CLOSELY COUPLES HYDRAULICS
AND HEAT TRANSFER THRU 28 AP MULTIPLIERS

* IF NO BOILING, HYDRAULICS AND HEAT
TRANSFER RELATIVELY INDEPENDENT,

TRANSIENT THERMAL HYDRAULIC BEHAVIOUR

- REACTOR CONTROL

- HT SYSTEM, AUXILIARIES AND SECONDARY
SIDE INTERACTIONS

- HT SWELL, RESPONSE TIMES, STABILITY.
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KEY AREAS OF DESIGN VERIFICATION (ConT'p)

HT 1s A LARGE SYSTEM COMPRISED OF COMPLEX COMPONENTS
AND MANY INTERACTING AUXILIARY SYSTEMS,

MosT EASILY HANDLED USING LARGE COMPUTER CODES AS
THERMAL HYDRAULIC DESIGN TOOLS,

STEADY-STATE N\ Te e (e
TRANSTENT v uvvvnv v unnnrnneanssssenssesssees SOPHT

DESIGN VERIFICATION THEN IS VERY MUCH INTERWOVEN WITH
VALIDATION oF NUCIRC anp SOPHT.

IMPORTANT SINCE DESIGN CODES USED TO EXTEND OUR REALM
OF EXPERIENCE TO COVER SCENARIOS WHICH CANNOT BE TESTED
IN A LABORATORY OR DURING COMMISSIONING,




NUCIRC - MODELLING UNCERTAINTIES

HYDRAULICS:

: COMPLEX COMPONENT AP LosSES,
E.G. S/G'S, FUEL, HEADERS

+ PIPE AND TUBE INSIDE DIAMETER
MANUFACTURING TOLERANCES, AP <><D°5

: HYDRAULIC LOSSES COEFFICIENTS TYPICALLY NO
BETTER THAN + 57 10 + 10%

COMPONENT INTERACTIONS
PUMP MANUFACTURING TOLERANCES

: MODELLING/SYSTEM SIMPLIFICATION ERRORS

HEAT TRANSFER:

S/G HEAT TRANSFER CORRELATIONS
EXTRA HEAT TRANSFER AREA ADDED To S/G

PIPING AND EQUIPMENT HEAT LOSSES

: S/G DRuUM AND ROH PRESSURE CONTROL DIRECTLY
AFFECT HT BOILING

POWER MEASUREMENT - ABSOLUTE AND DISTRIBUTION




NUCIRC - MODELLING UNCERTAINTIES (Cont'p)

COST OF THESE UNCERTAINTIES:

AN EXCESSIVELY CONSERVATIVE COMPUTED FLOW LEADS
TO A LOSS IN POTENTIAL POWER OQUTPUT:

1% IN FLOW —= ~ 1 M$ PER YEAR,




SOPHT - MODELLING UNCERTAINTIES

PRESSURIZER BEHAVIOUR ..... TEMPERATURE & PRESSURE:

- (ONDENSATION AND EVAPORATION ON INSURGE AND
OUTSURGE.,

-  PHASE CHANGE.,

STEAM GENERATOR:

- SWELL, SHRINK, RECIRCULATION

- HEAT TRANSFER WITH A PARTIALLY UNCOVERED TUBE
BUNDLE.

BLEED CONDENSER:

- U-Ture BEHAVIOUR

- (CONDENSATION BEHAVIOUR

VALVES:

- CAPACITY

- STROKING TIME



SOPHT - MODELLING UNCERTAINTIES (ConT'p)

NODAL-LINK DISCRETIZATION:

- PROPOGATION OF FLOW AND PRESSURE DISTURBANCES

- NUMERICAL PROBLEMS

COST OF UNCERTAINTY:  GREATER MARGINS
Lower LICENSABLE PoWER




WHY IS DESIGN VERIFICATION NEEDED

AS A MINIMUM, TO VERIFY THE OVERALL DESIGN INTENT.,

MoRE SPECIFICALLY:

FOR THE STATION OWNER/OPERATOR:
: PROVES STATION IS OPERATING PROPERLY
ELECTRICAL OUTPUT = WARRANTY
FUEL BURN-UP NOT EXCESSIVE
: D20 LOSSES SATISFACTORY

FOR THE LICENSING AUTHORITY:

: ASSURES THAT THE REACTOR CONTROL AND SAFETY
SYSTEMS ARE ADEQUATE.

: THE RISK OF RADIATION EXPOSURE TO STATION

STAFF AND THE GENERAL PUBLIC IS ACCEPTABLE.

DESIGN VERIFICATION ALSO SERVES TO VALIDATE DESIGN ASSUMPTIONS
AND DESIGN CODE MODELLING.,




WHAT ARE SOME OF THE BENEFITS

To THE STATION OWNER/OPERATOR:

EARLY DETECTION AND REPAIR OF DESIGN
DEFICIENCIES, MINIMIZING REPAIR COSTS,

1

POTENTIAL IMPROVEMENT IN THE POWER OUTPUT OF
A STATION OR IMPROVEMENT IN ITS OPERABILITY
(INCREASING MARGINS).

SUPPORTS LICENSING AND SAFETY DOCUMENTS AND IN
TURN CAN FACILITATE ISSUANCE OF AN OPERATING
LICENSE,

SUBSEQUENT UNITS ORDERED WILL BE IMPROVED,

TO THE DESIGN AUTHORITY:

- PROVIDES UPDATED DESIGN GUIDELINES, CRITERIA
AND DATA BASES FOR FUTURE PROJECTS,

- POTENTIALLY IMPROVES OVERALL EFFICIENCY,
OPERABILITY AND LICENSABILITY OF FUTURE STATIONS,

- ENHANCES PRODUCT MARKETABILITY,




AN EXAMPLE - CANDU 600 H.T. SYSTEM COMMISSIONING

PROGRAM SPAWNED FROM H.T. STABILITY CONCERNS:

ADDED TO THE GENERAL COMMISSIONING PROGRAM, NOT
PLANNED FOR DURING THE DESIGN PROCESS

METHODOLOGY ; FIGURE 3
MEASUREMENTS : FIGURE 4

DATA TRANSMITTAL
To AECL : FIGURE 5

DATA PROCESSING
At AECL : FIGURE b



FIGURE 3

COMMISSIONING DESIGN VERIFICATION
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FIGURE 5 : EXAMPLE OF A DATA TRANSMITTAL
SCHEME FROM A CANDU 600 TO AECL
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FIGURE 6 : EXAMPLE OF DATA PROCESSING
AT AECL
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TOTAL CORE FLOW

(SUSPECTED &7 &RRor 1y Data )
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