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Abstract

A multiple temporal-mode transformation combined with spatial
differencing is developed and applied in a two-group, three-dimensional
reactor dynamics analysis using the diffusion approximation. It is found
that this solution formalism Teads to an apparently efficient and effective
method for the study of fast transients for time intervals before a global
flux trend has been established. Calculational results for a simplified
cylindrical reactor under conditions of a fast transient and some generyl
properties of the formalism are discussed.
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Introduction

The development of efficient and effective analytical and cal-
culational models which describe a wide range of dynamic characteristics
of a nuclear reactor in three dimensions has long represented a desirable
goal. Experience with low-dimensional calculations involving suitably
chosen analytical descriptions and numerical strategies suggests that
this goal may be attainable.

The three-dimensional, multi-group, time-dependent analysis of a
nuclear reactor generally provides a basis for considerable scope in
exploring various strategies. Factors such as available computational
resources, detail of system description, temporal domain of interest,
and others combine to provide various though restricted options.

Here we describe a three-dimensional, two-group, time-dependent
neutron diffusion analysis based on the use of a multiple temporal-mode
transformation combined with finite differencing in space. As will become
clear, the chosen analytical formalism seems particularly applicable for
fast transients; in this context, this defines the dynamics of a nuclear
reactor before a dominant global flux trend has been established. In
the following we will describe the solution formalism and relate it to a
dynamic discretization. Finally, some preliminary calculational results
will be presented and some general features of the solution formalism
will be identified.

Multiple-Mode Solution Representation

The three-dimensional, multi-group, time-dependent neutron diffusion
description of a nuclear reactor with or without delayed neutron can be
represented in symbolic form by

[SENRCS)
|
<

(r,t) =

x>

(r.t) , (1)

where A is a systems matrix and y(g,t) is the vector containing the neutron
group fluxes and the neutron precursor groups. We choose to base our analysis
on a functional prescription used effectively by Hansen and associates (1-3)
and restrict our solution to the form

W(tieq) ~ vt (ty)explont,] , (2)

for a time step Atj = ti+] - tj. Here, o is a suitable parameter valid
during at.

To be specific, we consider the two-group, time-dependent equation
in three-dimensions written in its common form
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g oF bglBst) = 1D (rt)7e (r,t) g-z]zgg'(ﬁ’t>¢9'(5’t) , (3)
for g = 1,2 and where the symbols possess the usual meaning. Note that
herein we do not include delayed neutron precursors although the solution
formalism to be described here can be readily extended to include this
effect as well as more than two groups. We interject to note that the
exclusion of delayed neutron precursors will clearly effect the character-
istic temporal evolution of the neutron flux in a calculational context.
The above equations, Eq. (3), are coupled implying that a solution which
retains this coupling explicitly is desirable. Thus we choose to use an
Ansatz given by

(rlexple, (r)t] , (4)

for t e t;. Here ¢ (E’t) may be called a transformed flux while Bge (1)

and ag (r) may be termed moments and frequencies respectively. We emphasize
two important properties of this Ansatz. First, the flux-coupling property
specifies here that the g'th flux, ¢4(r,t), is given in terms of the
moments and frequencies associated wgth all other neutron group terms.
Second, the proposed solution, Eq. (4), reduces to the standard point-
kinetics solution if no spatial dependence is assumed to exist.

To place the multi-mode Ansatz, Eq. (4), in historical perspective
we point out that it does possess some relation to the Ansatz previously
used by Reed et al (1) and Wight et al (2)

tg(rst) = vlr,thexploglr)t] . (5)
and that used by Ferguson and Hansen (3)
bglrst) = vg(r,thexplalr)t] . (6)

The distinction in these three solution models rests primarily in the extent
to which the time variations of the various neutron groups are explicitly
Tisted as contributors in effecting a change in any given group flux.

Analytical Development

In the analysis to be pursued here, we restrict ourselves to an
arbitrary time step, Aty = tij47 - ti, for which the system parameters,
Dg(r) and z44:(r), are assumed to be given as a function of position only.
Tﬁu s ggcr?

<, our d bing equation for the g'th neutron energy group is now
given by
1 3 2
Va-gf-¢g(r,t) = y-Dg(g)y¢g(3,t) g'g]zgg-(c)¢g.(r,t) , (7)
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where again g = 1,2 and t e at. Substituting Eq. (4) into Eq. (7) yields,
after some algebraic rearrangement, the describing equations in terms of
og(x,t), Bgelx) and og(r):

2 B g (X) 2 B, (o, (1)
Qz1exP[a2(£)t]{_£%5§—'%E-QQ(L’t)} = -z§1eXp[ag(£)t]{ g \ple A\l @g(r,t)}

2
+ Zg]Bgz(g)exp[%(_ﬁ)t]{y.Dg(_lg)pg(_y;,t)} + Y'Dg(ﬁ)ég )
2 2
+ Qg]exp[“z(ﬁ)t]{g.;zgg'(E)Bg'z(’i)q’g'(-‘i’t)} (8)

Writing the transformed describing equations in this form identifies
the common multiplier containing the £'th order frequency, explay(r)t], in
each but the third term of the right hand side of this equation; the "del"
operator prevents a convenient extraction of this exponential term. Although
an argument could be attempted that the contribution of this term might be
small and hence could be neglected, we propose to set this term equal to
zero on the grounds that the resultant equation will be used only to evaluate
the moments, Bqq(r), and the frequencies, ag(r), at ti = 0. This latter
imposition posgesses the feature that it renders the terms upon which v
operates a constant and hence defines the entire 3'rd term equal to zero.

We will comment on this point again in a subsequent section. Thus, viewing
the leading term, explag(r)t], as a common coefficient requires that the
2'th term in each summation be equated as follows:

8 (L) B (ﬁ)
—5%2;—-gf-@g(£,t) = - _9%5——-a2(§)®g(r,t)
2
" Dgpluglr,t) g (08gr (D)2 (158) (9)

for g = 1,2 and t € Atj. This equation will now be examined to permit the
evaluation of oq(r,t), Bao(r), and a,(r) at all discrete values of r and for
0= 1.2 g\ AR (ALY >

Finite Analysis

We consider arbitrary time stem Aty = tj+1 - tj and, for convenience,
choose to use ti = 0 for all iterative time intervals. Either from the
time when the simulation is initiated or from the beginning of an arbitrary
iteration in time, we set t = tj = 0 and use Eq. (4) to write
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0g(1:0) = 24(1rs0) 1 g, (1) (10)
We choose to use a normalization on the moments Bgz(g) defined by
Z Bgply) = 1, (11)
2=1
and thus have
24(x:0) = ¢4(r,0) (12)

at the beginning of each time step.

To find the moments and frequencies, we use the value, ¢q(r,0),
associated with the beginning of each interval and assume that tﬁe temporal
evolution of the neutron flux during the interval at; is predominantly

exponential. That is, in Eq. (9) we impose the fo110w1ng condition on the
transformed flux @Q(r t)

gt 3(1st) =0, (13)

t e Aty

an? ob?aln an equation in terms of Bgz( r), az(s) and the initial conditions,
dglr,0
g\

v.04(x )y® (r,0)
“Bgg (K)o (1) + B (B)Vg ¢q(§’
2 «(1,0)
¥ 9.21299'(5)59'2(5)Vg _%EKE]TT -0 (e)

This equation can be written as an eigenvalue equat1on for the frequencies
a1(r) and ap(r) corresponding to the values of D (r) and egﬁ(r) at ¢ and
¢g(r,0) about r: - _ A

[~ v17.D;(x)ve, (r,0) a,(r,0) ] i
e+ —— 15 12081 310y 39,(1) 31, (1)
= a,(r)
¢, (r,0) V,V.Ds(r)va,{(r,0)
12 2=""2 1272\
+
i 2108V, 51707 Z22(5)V; AR I EAY 2.1
or, symbolically, (15)
g@g = ag@g * (]6)
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Since all elements of C are assumed known at the coordinate of interest, rs
the eigenvalues oy can be found by the solution to

€ -0l =0, (17)

In this two-group representation, aj(r) and ap(r), are the two solutions of
a quadratic equation.

The components of the eigenvector g,, Eq. (17), are given by any
non-zero column of the adjoint of [C-ag]], &DJ[Q-az;], to within
an arbitrary constant. Supposing that these vector components are identi-
fied by 85,(r). Then, according to the normalization condition, Eq. (12),
we find a“constant hg, g = 1,2, such that

hglegy(p) + 8(p)l =1, (18)

Hence, the moments Bg (r), g=1,2, 2 = 1,2, are determined. With the
functions og(r,0), of 37 and g 2(_};) all known at ti = 0, we insert these
values into”Eq. (8) and, by fiﬁ1te numerical methods solve for ®g(£,t +1).
With the use of Eq. (4), this resultant expression yields the fliix ¢g}§,t1+1)
at the end of the time step.

Numerical Modeling and Calculational Results

For the purpose of an initial exploratory three-dimensional examin-
ation of our formalism, it is advantageous to adopt a simple and direct
numerical model and to concentrate on relatively large scale effects. Our
simplified three-dimensional reactor is therefore chosen to be a homogeneous ,
bare cylinder penetrated by a control rod perpendicular to the axial direction.

We choose to restrict ourselves to a coarse spatial mesh describing
the whole reactor with 1320 mesh points. Errors may arise from three
sources: 1) numerical round-off, 2) finite difference expressions, and
3) boundary condition approximations.

Round-off errors will not be a severe problem in our calculation
both because of the precision of the Tong (60 bit) capacity of the CDC-6400
computer used in our calculation and because our equations involve only tri-
diagonal (three-stripe) matrices. Computer memory size 1imits the number
of values of the flux which can be conveniently stored; in particular, we
cannot keep the value of the flux at many past times and thus are forced to
compute the flux at time t based on values of the flux and system parameters
at time t-At and accept the attendant truncation error in the time step. If
the boundaries of the reactor do not 1ie on our chosen grid points then we
must take an approximation to the actual boundary values; we can avoid this
error, however, by describing our reactor in cylindrical co-ordinates (r,v,z).
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We have chosen to describe the spatial domain by two diametrically
opposite 90° wedges of the core. Use of the physical bi-lateral symmetry
of our reactor model allows us to construct all values not explicitly lying
within our grid thus reducing our computer storage requirements. The control
rod has been made to appear more regular by weighting the parameters accord-
ingly within the control rod region. A grid with 12 points in the r-direction,
10 points in the s-direction and 11 points in the z-direction yielding 1320
grid points has been chosen.

Start1ng w1th some initial array of values for the flux

(ri,69,29) = 1,2, we solve Eq. (17) - which here represents
a quadrat1g equat1on - for the spatial frequencies ag(r1) and for the spatial
moments Bgq(ri) according to Eq. (11) and Eq. (18). The diffusion term
in Eq. g 1s represented at the point ri = (ri,o5,z7) in finite different
form. Equat1on (8) may subsequently be written as a tr1 -diagonal system
which is implicit in one of the three spatial directions and explicit in
the remaining two. In solving this system we have chosen to use the alter-
nating two-direction impiicit method (2).

The data used in the sample calculation here are listed in Table I
and correspond approximately to those appropriate for a heavy water reactor.
Figure 1 shows the fast and thermal flux rise associated with two sudden
withdrawals of the control rod described by the following. At steady state
we consider the axial flux traverse adjacent to the cylindrical axis with
the control rod inserted 55% of the full cylindrical diameter. At t = 0
the control rod is suddently withdrawn so that only 27.5% of the diametrical
distance of the core contains the control rod. After a time interval of
320 us the control rod is withdrawn entirely. The flux rise is followed
for another 320 us up to t = 640 us, Fig. 1.

We note that during this very fast transient, the induced react1v1ty
disturbance effects both the fast and thermal flux on]y in the region close
to the control rod position. We also observe a contrast in the flux perturb-
ation and response between the fast and thermal flux.

The computer time requirements for this three-dimension, two-group,
1320 mesh-point calculation was found to be 0.84 s/step on the CDC-6400
computer used here. This is almost identical to the computer time require-
ments reported by Reed (5) for an efficient two-dimensional calculation
using a faster computer (CDC-6600).

Discussion of Solution Formalism

The describing equation, Eq. (1), used here can be easily extended
to G energy groups and include I delayed neutron precursor groups. For
this case we write the vector y(r,t) and the matrix A in Eq. (1) as
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.
p(rst) = [oqs Uoaeens Ugs Cyavns Cpls (19)
and
D, + T T ' F ol
17 16 B B 11
; : Vol :
; : Lo :
T61 Dg * Tgg : Fag - - - - - Fer
S L e mm e e -
- |
P P -A
11. 16 T 0
A (20)
P17 o o . P A 20
T IG I

Here, the notation conforms to that used by Ferguson and Hansen (3). The
matrix A is real, irreducible, square and "essentially positive"; these

properties are independent of the number of energy groups or delayed neutron
precursor groups.

The transformation used in our work herein may be represented by

=982 (21)
where the matrix operator g is defined by
~ —
Z]B]Q(E)GXP[QZ(E)t] 0
2= .
g = (22)
G
0 Z]st(g)exp[ag(g)t]
- v —
which, upon substitution in Eq. (1) yields,
d _ -1 . -1
Fe=0 (A-g0 ae. (23)

The moments Bq,(r), and the frequencies ag(r), are found from the condition

e=ga-dTge=0. (24)

This relationship suggests the following condition
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(

for the determination of the moments and frequencies; here A' is simply A
in which y.D(;)y is evaluated using the flux at t = 0. This eigenvalue
equation, Eq. (25) is, of course, the same equation as Eq. (17) obtained
by a different algebraic method.

=
D e

‘e -2)e=0, : (25)

It is important to note that the difference matrix (A - A'), appear-
ing by subtraction involving Eq. (1)

d _ -1 i
prl Il (é\—é\»)m, (26)

is composed only of terms containing the Laplacian v2 along the main
diagonal (4). Thus, the equations are separable in the neutron group flux
and can be solved by sequential elimination. This is a most useful con-
sequence since it eliminates the need for group scanning (3).

Some additional points of observation seem pertinent to this solution
formalism. As indicated, the moments and frequencies, g g (r) and ay(r), are
calculated from A', that is, the matrix A appropriate to the beginning of
the time step. An improved value for A' might be obtained using a predictor-
corrector scheme although it appears that the benefits from such a scheme
would be highly dependent upon the reactor system of interest.

Further, we approximated the fourth term in Eq. (8)

G
Ty = Y-Dg(l;)®g(£,t)Y2§1eXp[%(£)t]B (r) » (27)

ge

at t = 0 while permitting the rest of the equation to be a function of time.
This equation could be expanded to yield

G

Ty w1 exple (p)tleg, (r(n,t) (28)

where r(g,t) is obtained by performing the spatial operations suggested in

Eq. (27). Equation (9) could be expanded to include this additional term

and the?ef?re provide for an improved estimate for the moments and frequencies
in Eq. (17).

Although the calculational experience with this new formalism is
limited, it does appear to possess considerable merit particularly in the
descriptions of fast reactor transients.
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Fast and thermal neutron flux rise. At t = 0 the control rod is
suddenly raised from 55% of full diametrical insertion in core to
27.5%; at t = 320 ps the rod is withdran entirely. During the
640 us time interval, the flux perturbations are found to be con-
tained close to the region of the radial direction of control

rod location.
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Parameter Reactor Core Control Rod
s (en™) 0,97 x 1078 -0.97 x 1073
2y, (cm) -0.41 x 1072 -0.10 x 10°
£y (™) 0.86 x 1072 0.86 x 1072
£, (cm™) 0.48 x 1072 0.48 x 1072
D1 (cm) 1.40 1.30
D2 (cm) 0.92 0.86
_ 6 . _ 5

Vg = 2.0 x 10° cm/s vy = 2.0 x 10 cm/s
R=3.50m H=5.94m

Table I: Data used in sample calculation.
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DISCUSSION

A. Siebertz

Your method could be called a quasi-static method with spe-
cialized exponential form amplitude function.

Could you comment on the relative merits of both methods

(accuracy, computing time ...)?

A.A. Harms

First, for very rapid changes with highly localized effects,
this method seems more accurate and at least as fast. Se-
cond, the one additional important merit point is associ-
ated with the group-coupling solution representation which
describes an arbitrary group flux in terms of all other
groups; thus, increases in one group and concurrent de-

creases in another group can be both described.

A.F. Henry

The improvement caused by these methods when applied to al-
ternating directions schemes is much greater than when they

are applied to fully implicit schemes.

D.A. Meneley

1) The quasi-static method is best suited to fast reactor

problems.

2) Hansen's and Harm's methods have pointwise or/and group-

wise exponential transformations with extrapolated coef-



ficients. The quasi-static method has a single amplitﬁde
function obtained by solution of the point kinetic equa-
tion. Quasi-static methods are presently limited to lin-
ear variation of shape functions with time; on the other
hand, the Hansen-Harm's methods are limited in maximum
time step length because of the extrapolation, constant
properties over the time step, and by alternating-direc-
tion solution method. The question can only be answered
by running a series of benchmark problems with all me-
thods.
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ABSTRACT

The papers presented at the meeting discuss problems related
to three-dimensional kinetics calculations of nuclear reactors

with the inclusion of feedback effects.

Solutions of benchmark problems posed by NEACRP/CSNI and

submitted by various contributors are compared and discussed.






INTRODUCTION

The main topics of the papers are the following:

1. Recent developments of computational methods for the

analysis of 3-d neutron kinetics:

- Numerical methods general.
- Coarse mesh methods.
- Analysis and evaluation of 3-d neutron kinetcs cal-

culations.

2. Comparison and discussion of benchmark problems posed
by NEACRP/CSNI:

- Four 1-d benchmark problems for a gas-cooled thermal
reactor (9 submitted solutions)

- 2-d benchmark problem for a LWR (5 submitted solutions)

- 3-d benchmark problem for a LWR (2 submitted solutions)

- Four 2-d benchmark problems for a fast reactor (4 sub-
mitted solutions)

The meeting was attended by 41 officially accepted partici-
pants from 15 countries and international organisations.
14 papers have been presented from 8 different countries

and organisations.

W. Werner
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