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6. Gamma-Ray dand Electron Transport by
Monte Carlo, William L. Thompson (U of Va)

A Monte Carlo computer code, MONTELEC, which
simulates gamma-ray and electron transport, including an
explicit treatment of bremsstrahlung effects for energies
up to 10 MeV, has been developed at the University of
Virginia. Results of sample calculations made with the
- code are in good agreement with similar calculations by
other models and with experimental results {for electrons
incident on thin and thick targets) found in the literature.

The gamma-ray portion of the code treats the transport
of gamma rays by standard Monte Carlo techniques. The
three primary gamma-ray events (photoelectric absorp-
tion, Compton scattering, and pair production) are con-
sidered explicitly in order to generate the appropriate
secondary electrons that contribute to the total effect of
the incident radiation.

Histories of electrons (whether the electrons are the
primary radiation or the result of gamma-ray interac-
tions) are followed using ETRAN, an electron Monte Carlo
program developed by Berger, as a model.! Rather than
explicitly following the electrons collision by collision as
is done with gamma rays (an electron may have many
thousands of collisions while losing a few MeV versus 20
or 30 for gamma rays), groups of collisions are con-
sidered using multiple scattering theories of electron in-
teractions as reviewed by Zerby and Keller.? The
production of bremsstrahlung, including energy and angu-
lar distributions, is descrlbed by the Bethe-Heitler cross
section with analytical and empirical correctmns as out-~
lined in the classic paper by Koch and Motz.?

Heretofore, the contribution of bremsstrahlung to the
shielding problem of high-energy gamma rays has not
been taken into account. This contribution has been cal-

TABLE I

Dose Attenuation Factors for 8-MeV Gamma Rays
Normally Incident on Lead

Monte Monte
Lead Carlo? CarloP
Thickness without with

(g/cm®) Brems Brems Experiment®
20.2 | 0.31 1.1)d | o.37 2 | 0.38 (2.51
58.3 0.099 (2.0) 0.12 (4.8) 0.13 (3.4)
87.5 0.029 (3.5) 0.037 (7.9) 0.040 (4.9)
116.5 0.0090 (6.0) 0.012 (14) 0.013 (7.3)
145.8 0.0026 (10) 0.0031 (25) 0.0040 (11.2)

2Results from MONTELEC without including bremsstrah-
lung production.

bResults from MONTELEC including electron transport
and bremsstrahlung.

CExperimental measurements from the University of
Virginia (for 8.2-MeV average gamma-ray energy)

dNumbers in parentheses are percent fractional standard
deviations.
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culated by the MONTELEC codeto be a significant portion
of the total transmitted dose for 8-MeV gamma rays nor-
mally incident on lead (see TableI). Furthermore, albedo
calculations for 8-MeV photons incident on lead also in-
dicate a large contribution (50% of dose albedo) from
bremsstrahlung to the total reflected dose. The brems-
strahlung contribution is in the form of photons having
energies above 0.51 MeV, which would not have been pre-
dicted by calculations that only consider primary gamma-
ray interactions. These calculations represent about 1 h
of CDC-6400 computer time for 3200 initial histories.
The results are in good agreement with experimental
measurements obtained at the University of Virginia,
some of which appear in Table 1L*7°

Although this present work is preliminary with a
further study of bremsstrahlung planned, the corrobora-
tion of the MONTELEC and experimental results strongly
suggests that high-energy photon and/or electron trans-
port studies should account for bremsstrahlung.
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7. A Directional-Biasing Solution for Radia-
tion Transport, A. A. Havms, W. J. Garland
(McMaster Univ)

The transport of radiation in cases of deep penetration
and streaming requires particular emphasis on the direc-
tional ranges that contain the dominant radiations. The
practical importance of these directional considerations
has motivated the development of specialized ealculational
innovations.'’?

It is possible to introduce a directional flexibility info
the framework of polynomial approximation which can
readily be used to emphasize a desired directional detail
and lead to more accurate results even in a low-order
approximation. Such a formalism is described herein.

We consider, as one application, the asymptotic spatial
moment in plane geometry

¢as(x) = poexpl-rox), (0

and propose to evaluate the asymptotic decay constant «o
in accordance with a chosen directional bias which will
lead to most accurate results. To accomplish this, we
define an N’th-order segmentation of the cosine of the
scattering angle, p, by the following ordered partition of
the range {-1, +1}:

(-1, pomg, oo tny e e HN-1s + 1}. {2}
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Since these partitions are arbitrary, they may accordingly
be optimally chosen to emphasize the directional detail as
necessary.

The appropriately biased asymptotic decay constant Ko
js found by expanding the directional moments over each
of the N angular intervals using a modified Legendre
polynomial representation which we define as

2u-Un~Hn-

The appropriate properties of orthogonality, integrability,
and recurrence of these functions for the one-speed case
have recently been demonstrateda; hence, the substitution
of these polynomials into the transport equation and the
subsequent algebraic operations lead to an eigenvalue
condition for the determination of Ko-

P, 1w = Py (3)

With the asymptotic decay constant Ko thus specified,
we have analytically and computationally studied the effect
of angular segmentation on various radiation transport
parameters. One such result is shown in Table 1. Here
we have evaluated the asymptotic decay constant, ko, in
Eq. (1) and compared it* to kexact- Both a systematic and
random search was undertaken to find an optimum angular
segmentation with respect to the calculation of K.

TABLE I
Evaluation of Asymptotic Decay Constant K, Using Modified
‘Legendre Polynomials forL=1;N=2345¢= 0.3;
Kegact = 0.99741

N {—1,u1,...,pn,...,pp1,+1} Ko % Error
2 | {-1, 0, +1} ] 1.1493 15.2
(-1, 0.86, +1} 7 1.0106 1.32
3 | {-1, 0, £0.99, +1}* 1.0000 0.217
{-1, -0.86, +0.55, +1}7 0.99993 0.26
4 | -1, 0, +0.70, +0.99, +1}* 1.0000 0.27
{-1, -0.01, +0.48, +0.98, +1}T 0.99993 0.26
5 | {-1, pa, 0, +0.70, +0.99, +1¥F | 1.0000 0.27
{-1, -0.97, -0.72, -0.39, +0.52, +1}7 | 0.99987 0.25

+: Optimum angular segmentation based on a random search of

100 sets.

*: QOptimum angular segmenmtion'based on knowledge of N-1
order of approximation.

pg: Calculation of k, is insensitive to variations in [a.

Several conclusions have emerged from the use of the
modified Legendre polynomials, Eq. (3): (a) some radia-
tion transport parameters can be evaluated with very high
accuracy evenina low-order approximation; (b) optimum
angular segmentations are generally nonsymmetric about
p=0; (¢) numerical accuracy for some transport
parameters increases significantly with increasing radia-
tion absorption and, in this domain, may yield more ac-
curate results than are attainable using Pg, and SN theory
of comparable algebraic complexity.

Calculations have been undertaken for various trans-
port parameters and comparisons with other solution
formalism made where possible.
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8. Experimental Study of Basement Ceiling
Attenuation Factors, R. S. Reynolds (Miss
State Univ) :

Eisenhauer developed the Standard Method! from
Spencer’s data®? Several evaluations®™® have shown that
the Standard Method predicts structure fallout protection
quite well for above-grade locations. The principal weak-
ness occurs in the prediction of basement protection.
Several studies have been undertaken to determine the
origin of the weakness,” ** the consensus being that the
ceiling barrier factor, Bo(X4), was improperly formu-
lated.

This work was undertaken to measure the ceiling at-
tenuation factor as a function of ceiling mass thickness
and solid angle fraction, w, and compare the results with
experimental and empirical formulations previously de-
veloped.>'®" The test structure and fallout simulation
technique has been previously described.”

The experiments were to yield data to determine the
ceiling attenuation factor, Be(Xc,w), for a mass thickness
of 12 psf as a function of w, and as a function of X¢ for w
near unity. In the first series, w varied between 0.72 and
0.96; in the second series,Xc¢ varied between 0 and 81 psi.

Equations (1) and (2) represent the expressions used in
the Standard Method to calculate the ground contribution
reduction factor in a basement. Equation (2)is for a 0-
psf basement ceiling.

R = Be(Xcw)Be(Xe,3')Gglwe Xe) + Ag(0)BoXo+Xyr,w)
(1)
Rf = Be(Xe,3’)Gg(w,w’,Xe) + Apg(W)BelXy,w). 2)

The notation is that of the Standard Method, where Xe
and Xy are the exterior wall and first-story mass thick-
nesses, respectively. The last term in both equations
represents the skyshine contribution. If skyshine is re-
moved, the ratio of Rf to R} yields BelXe,w). Experi-
mentally, the superposition technique is used to measure
the reduction factors and Be(Xc,w) may be represented as

n
ig R;(Xc, w)+ Rp(Xc, @)
Be(Xe,o) = — ,

. R;(0w) + Ry{0,w)

(3

i=
which assumes skyshine is not present. RF(Xc,w) is the
far-field contribution for a given X and w.

The far-field contribution may be determined experi-
mentally’> or mathematically using the finite field data.’®
A useful model is

Rp(Xe.w) = ap(Xe WDy + agfXe,@)St (4)

where ap and ag are direct and skyshine structure attenu-
ation coefficients estimated from the finite field data. DF
and SF are the corresponding free-field exposures for the

-



