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Abstract

The problem of specifying optimum angular segmentations in neutron
transport analysis is considered. A new directional-group representation
using partial-range Legendre polynomials is introduced for this purpose. It
is found that this solution formalism can be used to specify angular segment-
ations which minimize the error of certain neutron transport parameters for
a given order of approximation.

Introduction

The analytical study of one~speed neutron transport has beeg
important in providing general descriptions of neutron migration(l’z .
Increasingly, researchers are focussing attention on the develomment of
computational strategies and on the extension of mathematical constructs to
extend the utility of neutron transport models to a wider class of reactor
physics problems.

One key problem which exists is the specification of angular seg-
ments in such neutron transport calculations. Though the initial application
of the spherical harmonics method by Wick(3 and Mza.rk()4 involved contin?o?s
expansions over the angular interval from -1 to +1, it was found by Yvon 5
that independent expansions over each of the half-ranges permitted substantial
calculational improvements. More recently it has been shown(6) that partial-
range Legendre polynamials can be defined over arbitrary partial ranges of
the angular varisble. This progression from full-range to half-range and
now to partiasl-range representations has introd cid an additional generaliza-
tion; for example, both, Carlsons' Sy formalism T) and the method using
quadrature sets 5 can, in a sense, be considered as special cases of the
partial-range representation( .

Here, we examine specifically the problem of specifying "optimum"
angular segmentations for neutron transport caleculations. The criterion to
be empioyed is the accuracy with which a transport parameter can be calcula-
ted for a given order of approximation. The analytical freedom in specifying
angular segmentations of the partial-range Legendre polynomial representation,
hereafter referred to by the acronym NP1, is the motivation for using this
formalism. To provide a sufficiently rigorous test, and also for reasons of
historical precedent, we calculate the several tranport parameters associated
with a vacuum-medium interface; the selected parameters are (1) the extra-
polated end point, (2) the linear extrapolation length, (3) the asymptotic
flux to total flux ratio and (L) the asymptotic decay constant.
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In the following sections we first describe the partial-range forma-
lism within the context of an arbitrary angular segmentation. Thereafter,
we examine a low order approximation to illustrate certain characteristics of
the formalism. Subsequently, we study in greater detail a higher order
gpproximation. In the final section we summarize certain general rules for
the specification of optimum angular segmentations.

Development of Model

Using the notation of Case and Zweifel(z), we write the one-speed
integro-differential neutron transport equation for the case of isotropic
seattering in source-free infinite plane geometry as

1
u%}%(XQU)*'\b(XQU) =_§_ [ w(x’U')du' ’ (l)
4

where p represents the cosine of the scattering angle, x denotes the spatial
varisble in units of mean-free-path, and c denotes the number of secondary
neutrons emitted per neutron-nucleus interaction. The angular neutron
density is represented by y(x,u).

Since the angular variable u is defined over the range (-1,+1), we

impose N ordered angular segments over this domain as follows:

& IS I TS TOUOIN SRS ISR = D I (2)

Over each of these segments we specify a linear partial-range variable,
which, for the n'th interval, is defined by

+ .

* 2 ptHnoa
LN W- T . (3)

n n-1 n n-1

. *
We note here that Mo is normalized in the sense that
#* * L

uy = -1 for uw =1 ., and u = +1 for u =y . (ny.

Next, we define partial-range Legendre polynamials over each
angular segment by

*
P(u),n <u <y,
2 -
Pn,l(u) = n n l n (5)

0, otherwise,

and propose to write the solution to Eq. (1) in a form similar to the usual
method associated with orthogonal polynomials:

¥ L
wlxu) =§ 7 2L, (x)p

= . (6
b 2 0 () )

n,4

Further; we write the spatial moments ¢n z(x) contained in this
expression as ®

s

b g (0 = Ay (1)
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Thus, the coefficients, An,z, and the eigenvalues, 1/v, need to be found.
Conditions for the An’g's and the 1/v's are obtained by using the s?giral
properties of orthogonality, recurrence, and full-range integration . With
the aid of these properties we substitute Eq. (6) and Eq. (7) into Eq. (1) to
obtain a linear system of which the typical equation is given by

A (34w )ea (=% )(%ﬁ(u -u

n,2' v’ Mn -1/, 0-1 BT n -1 )24 o

n,4

A 4 (e () (u -

n,.+1l 22+1 Nyt un-un-l

N
L) élA ( Y60, = O (8)

withn=1,2,...,N and ¢ = 0,1,2,...,L.

Lowest Order Approximation (N = 2)

In the preceeding section we have illustrated the derivation of a
formalism which is particularly amenable to an emphasis on the angular
segmentation. In this section we illustrate an application using this
directional freedom to obtain an optimum segmentation in the sense of per-
mitting a best possible estimate of the asymptotic decay constant. To make
the analysis more obvious we choose the low order case of N = 2 and L = 0.
This specifies two angular segments, namely (-1,p7) and (u1,+1). The problem,
therefore, is the determination of vy which yields the most accurate deter-
mination of the asymptotic decay constant for this order of approximation.

For the approximation desired, N = 2 and L

0, the system of
equations represented by Eq. (8) reduces to ’

Al’o{(l/v)(ul-l)—2+c(ul+l)}+A2’O{c(l—u1)} =

o
]

Al,o{C(“1+l)}+A2,o{(1/V)(1+“1)}’2+°(1'“1)} =

I
o

(9)

Since the coefficients Ay o and AQ,O are of secondary interest at the present,
we employ the usual methods of linéar algebra to obtain here a 2x2 secular
determinant in e, 1/v and H1. In this case, this determinant reduces to a
guadratic equation in both 1/v and My

(y/9)%=(2/9)#k (1 /9) (e-1)-b(e-1) = 0 | (20)
We must now choose Hy subject to the folloﬁing optimality criterion:

Minll/v-l/vol for all ¢ . (11)
Here, 1/\)o is the exact asymptotic decay constant(e) given by

/v, = tanh"l(l/vo) . (12)

We have performed this analysis by numerical search. In Table 1 we
show the results for this 2Py approximation and, in.addition, we have ’
extended this analysis to the next approximation with N = 2 and L = 1, i.e.
2P1. For purpose of ready comparison, we list in the same table the results
obtainable from the usual methods of spherical Harmonies for L = 3, i.e. P,
This comparison illustrates that, while the difference between the NP. and P
results are small for higher c, a substantial improvement is possible with
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decreasing ¢. Indeed, even in the low order approximations examined here, an

anguiar segmentation can be specified which approaches the exact value of
the asymptotic decay constant for the case of heavily sbsorbing media.

Higher Order Segmentation

The principal complexity brought sbout in the calculation of neutron
transport parameters using an optimum angular segmentation in & higher order
approximation is atirivbuted to the appearance of eigenvalues in the secular
determinant associated with Eq. (8). This requires that the spatial mcments
be expanded in all these eigenvalues as follows

=] 1 (v, Je Nk (13)
¢ x) = B, A v € i . 13
n,% LGB AR

Here, we have indicated the dependence of A on vs 13 the B ,k'é are
constants to be found by the use of boundary ’conditidns appropriate to the
problem considered.

As the class of angular segmentations to be considered in detail we
specify the following three partiticns

(-1,0),(0,1°) 4 (1°,#+1) 5 and (~1,1°),(1°,0),(0,+1) , (1k)

where u° is the optimum angular segmentation to be identified. This specifies
N = 3. We further choose to restrict ourself here to L = 1l; this therefore
defines the 3Py approximation.

For this case of N = 3 and L = 1, the formal solution of Eq. (1)

3
which incorporates Eq. (13) and Eq. (6), is now written

: -x/v
3ok
IR WAL ' (15)

3 1 3 1
Wxa) =] ] BEe ] Is
n=1 2=0 ? J=1 k=0

The several neutron transport parameters to be evaluated require
the evaluation of the neutron scalar flux
1
| o) = [ wteanan (16)
¢ 1

and the asymptotic flux(9)

3 u_-u -x/v
_ n_ n-1 -
wasy(X) = nzl B a— B_An,o(v_)e
-x/v+ v
+B+An,0(v+)e . (in)

Both expressions follow directly fram the definitions of y(x,u). In this
latter expression we define 1/v_ as the largest negative eigenvalue and l/\)+
as the smallest positive eigenvalue; we further introduce the normalization
that B_ = 1.
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The three neutron transport parameters which we will evaluate
computationally are typically associated with & vacuum-medium interface ang
defined by the following:

1) Extrapolated end point ZO;

Voo (Z.) = 0 (18) i

asy ' “o

2) Linear extrapolation length A

v (0)
A= 28 . (19)
wé;.sy(x x=0

3) Ratio of the asymptotic flux to the total flux,
L (0)

q’:W%T" . (20)

In Table IT we list typical results from this calculation. In
the upper part, for ¢ = 0.5, we show that by a suitable choice of the angular
segmentation u° it is possible to obtain exact values for these neutron
transport parameters even in this low order approximation. We note, however,
that the angular segmentation differs somewhat for the several pParameters.
In the lower part, for ¢ = 0.7, we show the best estimates of the neutron
transport parameters which can be obtained by an optimum choice of the

approximation.

Discussion and Conclusion

In the Dreceding section we described the analytical formalism of
the NPL representation andg illustrated the camputational improvements
Possible with an optimum angular segmentation. From Tabie T we can extract,
for example, the general rule of Specifying an optimum angular segmentation
which, for a given c, will Permit the most accurate determination of the
asymptotic decay constant in the 2PO and 2Pl approximation. As is clear,
the angular segmentation should be close to Hy1 = #1.0 as ¢ decreases; thei
rate of change depends upon the approximation used.

We have further undertaken to specify rules for the determination
of an optimum angular segmentation, pu®, in the 3Pl approximation applicable
to the other neutron transport Darameters. As is evident from the results

the number of secondary neutrons, ¢, and the specific barameter, ¢, Z, and A.
An overall pattern may, however, be graphically represented, Fig., 1. Here
we show the domain from which 19 shoulg be extracted as a function of ¢
which lead to, either the exact value, or the best estimate, of the neutron
transport Parameters ¢, Zo and A.
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]
, i
¢ 1/\)o 1/v for 2P0 1/v for 2P1 1/v for P3
(Exact) (this work) (this work) (Spherical
Harmonics)
.1 1.0000 1.0000 1.0000 1.139

(ul = +.99) (ul = +.99)

.2 -9999 1.0000 1.0000 1.113
(up = £.99) | (u; = £.99)

o .9856 1.0000 .995 1.040
(ul = +.99) (ul = +,90)
.6 .9073 .980 .917 .923

(ul = +,82) (ul = +.66)

.8 . T10k .800 LT1h : .712
(“1 = +,50) (ul = +.42)

.9 . 5254 .600 .527 . 526
(ul = +.34) (ul = +,28)

Table I: Tabulation of asymptoetic decay constant ang associated
angular segmentation for 2Po and 2Pl as derived herein
and comparison to results obtainable using PL (Spherical
Harmonics) with L = 3. !
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¢ = 0.5

Parameter Exact Value Calculated Error
(this work: 3Pl) A
) 1.176 1.176 0
(u° = .905)
V4 1.4 1.k 0
° o)
(0" = .921)
A . 920 .920 0
(° = .999)
c=0.7
Parameter Exact Value Calculated Error
(this work: 3Pl) %
) 1.206 1.202 .33
(° = .79)
Zo 1.018 1.005 1.29
(1° = .79)
A .830 .812 2.17
(1° = .79)

Table II: Neutron transport parameters and their associated
optimum angular segmentation for the 3Pl approxima~

tions.
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