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ABSTRACT

The classification of second-order partial differential equations is given. The solution
of partial differential equations by the finite difference method is outlined. Some important
considerations in the development of finite differnce approximation solutions to partial
differential equations are discussed: various finite difference forms to derivatives;
convergence, consistency and stability; explicit and implicit forms; accuracy and conservative
formulations. Finally, we consider a few numerical methods that have been used in various
reactor thermalhydraulics computer codes.

13.1 Introduction

In Chapter 10, the conservation equations governing the transport of mass,
momentum and energy for single- and two-phase flow are given. Analytical solutions to these
equations are possible only under extremely simplified conditions. In general, these
equations are solved by numerical methods. There are three classes of numerical methods:
the finite difference method, the finite element method and the Monte Carlo method. Since
most of the computer codes used to date in the thermalhydraulic analysis of nuclear reactors
utilize the finite difference method, we shall concentrate on this method to lay the foundation
for subsequent understanding of the inner workings of these codes.

13.2 Classification of Partial Difference Equations

Partial differential equations (PDEs) are frequently classified in terms of their
mathematical forms as being of the elliptic, hyperbolic or parabolic type. Consider the
quasilinear second-order PDE in two independent variables:

where A, B, C and E are functions of x, y, v, dv/9x, 8v/8y. IfB?-4AC < 0, the PDE is elliptic. If
B2-4AC = 0, the PDE is parabolic. If B%4AC > 0, the PDE is hyperbolic. Since the values of
A, B and C depend on the independent variables (x,y), it is possible for a PDE to change class
within the different regions of the domain for which the problem is defined.

Physically, elliptic PDEs correspond to the governing equations of equilibrium
problems. These are problems of steady state in which the equilibrium configuration v in a
domain D is found by solving the PDE within D subject to certain boundary conditions on the
boundary of D. Very often, the domain D is closed and bounded. Such problems are known as
boundary value problems. Laplace’s equation viax® + aZv/ayQ = 0, is a familiar example of

13-1



an elliptic PDE. Parabolic and hyperbolic PDEs correspond to the governing equations of
propagation problems. One is given the initial state of the system and would like to solve for
the unsteady state or transient behaviour of the system for subsequent times subject to
certain boundary conditions. These problems are known as initial boundary value problems.
A simple example of a parabolic PDE is the diffusion equation, dv/ét = D a%v/ox%. A simple
example of a hyperbolic PDE is the one-dimensional wave equation, #viot? = 2 d?v/ox>

13.3  Numerical Solution of PDEs by Finite Difference

The finite difference method for the solution of PDE problems is based on the use of
finite difference approximations (FDAs) for derivatives. First, the solution domain is divided
into a grid of nodal points. This grid is normally uniformly shaped and its shape reflects on
the nature of the problem and its boundary conditions. Second, the governing PDE is written
in terms of some convenient coordinate system and transformed into a partial difference
equation by approximating the continuous derivatives by finite differences involving
neighboring grid points. The finite difference equation is written for every point in the grid,
and the result is a set of n equations in n unknowns. Finally, the system of n equations and n
unknowns is solved by a numerical technique. Although the above description may appear to
be simple and straightforward, there is considerable variation in grid types, grid sizes, partial
differential equations, finite difference approximations to these equations, and solution
techniques for the resulting equation system. The reader is referred to the references cited at
the end of the chapter for more details. In the following sections, we shall discuss some
important considerations in developing FDA solutions to PDEs.

13.4  Finite Difference Approximations to Partial Derivatives

By applying Taylor series expansions about a point (1,j) in a rectangular grid, we
obtain the following FDAs to first and second-order derivatives at (i,j):

v _ Virni” Vi (1)
ax Ax
v Vi Vi 2)
ax Ax
v VienjT Vic1,j (3)
ax 2Ax
2 -
v Vi 2VatVion @)
ox’ Ax?

Equations (1), (2) and (3) are known as forward, backward and central difference forms,
respectively. Equation (4) is the central difference form for the second derivative.
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13.5  Convergence, Consistency and Stability

A solution to an FDA to a given PDE is said to be convergent if, at each point (x,y) in
the solution region, the solution to the FDA approaches the solution to the PDE as the grid
spacings, Ax and Ay, approaches zero. In general, it is very difficult to show convergence of
the solution of an FDA to that of a PDE. Fortunately, we can make use of an equivalence
theorem due to Lax which states: Given a properly posed linear initial value problem and an
FDA to it that satisfies the consistency condition, stability is the necessary and sufficient
condition for convergence. This theorem is of great practical importance because it is
relatively easy to show the stability of an FDA and its consistency with a PDE.

A finite difference equation is said to be consistent with a PDE if in the limit as the
grid spacings tend to zero, the FDA becomes the same as the PDE at each point in the domain.
For example, consider the diffusion equation, 3v/3t = D 8°v/0x%. Applying forward difference
in time and central difference in space (FTCS), we obtain

Vien ;7 Vi b e ALY (5)
At h Ax?
By Taylor series expansion, Eq. (5) becomes
av 62v
S =p—| +E (6)
by iy M

where

At 8! D(Ax)2 oty 9 4
. + — + 0 {(At)", (Ax)}
b 2 g¢%l i 12 it

This error, E, ,, is called the truncation error. Since the truncation error tends to zero as A,
Ax — 0, the FDA is consistent with the original PDE. Consistency is often taken for granted.
Carnathan et al. (1969) gave an example for which consistency may not be guaranteed if we
are not careful.

Stability of an FDA is concerned with the behaviour of errors introduced (typically by
round-off) in previously caleculated values at each grid point. An FDA is stable if the
difference between its theoretical and its numerical solution remains bounded at all grid
points as the number of time steps increases and At remains constant. Any numerical scheme
which allows the growth of error is unstable, and the resulting error will soon obliterate the
desired solution leading to entirely spurious results. Note that the stability of an FDA has
nothing to do with the original PDE. There are many different methods for studying the
stability characteristics of an FDA. See, for example, Ames (1977) and Roache (1976). For the
diffusion equation, av/at = D 8°v/ax?, it can be shown that the FTCS FDA scheme is stable for

DAt
<

1
0< 5 5 (7

Ax

For a given D and a fixed space interval Ax, Eq. (7) places a limitation on the time step At,
namely At < (Ax)2/2D. Restrictions on the grid step size in order to ensure stability of the
FDA can dictate long computational times.
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Finally, it is noted (Noye, 1978) that attempts to find an equivalence theorem for non-
linear PDEs have been unsuccessful. According to Roache (1976). The existing mathematical
theory for numerical solutions of nonlinear PDEs is still inadequate. There are no rigorous
stability analyses, error estimates, or convergence proofs... it is still necessary to rely heavily
on rigorous mathematical analysis of simpler, linearized, more or less related problems, and
on heuristic reasoning, physical intuition, wind tunnel experience, and trial-and-error
procedures.

13.6 Explicit and Implicit FDA

An explicit FDA is one which expresses one unknown value of the function directly in
terms of known function values at other grid points. Hence, explicit FDAs are simple to
calculate; however, they usually suffer from inefficiency due to restrictions on the grid size
from stability considerations.

An implicit FDA is one in which an unknown function value is related to a linear
combination of other unknown function values at other grid points. Hence, the solution of
implicit FDAs will require inversion of large matrices. This imposes severe requirements on
the memory capacity and speed of the computer and also calls for skill in efficient inversion of
large, sparse matrices (inevitably through some iterative procedure). The advantage of
implicit FDAs is that they often possess less stringent stability requirements.

13.7 Accuracy and Conservative Formulations (Cheng, 1975)

The conservation laws of mass, momentum and energy of a fluid can be expressed in
differential and integral forms. It is, therefore, desirable to require that the FDAs to PDEs
retain the conservative property, at least to the order of accuracy required, locally as well as
globally. In practice, since FDAs are derived from the microscopic PDEs, the conservation
laws are properly approximated to some order of accuracy by the FDA locally. However, when
the FDA of such conservation laws are summed over a large but arbitrary collection of such
spatial elements, the conservation laws may not retain the same degree of accuracy globally.
This is because the small high-order errors may accumulate when summed over a large
number of small discrete elements which make up the domain of computation. Now, for an
approximate description of a physical problem of say 0{Ax?}, it is essential that such
conservation laws should be accurate to O{sz} over not only the differential elements, but
also finite volumes. If the truncation errors of the conservation laws in finite space are to be
0{Ax?}, the errors must not accumulate when neighboring mesh cells are summed up. If the
truncation errors are allowed to so accumulate, the difference formulation used should be
higher-order accurate, so that the accumulation of such small higher order truncation errors
over arbitrary mesh combinations throughout the field of computation will not exceed O{sz}.
For example, consider the equation,

d(pu) dp du
=u—+p
dx dx _ dx

(8)

Applying forward difference to both sides of Eq. (8), we obtain

dow)  Pir1 Y™ B (9a)
dx Ax

L.H.S. =
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RHS. =p d_u + ud_p ~p Y™ Y +u Pip17 B (9b)
dx dx 1 Ax 1 Ax

Clearly, the right hand sides of Eq. (9a) and (9b) are not the same. When summed over a
finite interval, Eq. (9a) will retain its accuracy to 0{Ax}, whereas the errors from Eq. (9b) may
accumulate leading to lower order of accuracy.

13.8 A Few Special Methods

Several numerical methods that have been used in various reactor thermalhydraulics
computer codes are: the implicit-continuous Eulerian (ICE) method, the Porsching method,
and the method of characteristics.

In the ICE method, the standard Navier-Stokes equations with primitive variables of
velocity, density, enthalpy and pressure are used. A staggered grid spacing is employed. The
PDEs are discretized using advance-time (implicit) treatment of the density in the equation of
state and the density and velocity in the mass equation. The ICE method essentially reduces
to FDAs corresponding to PDEs of an elliptic flow field. A simultaneous iteration on pressure
and velocity components using a Newton-Raphson technique is applied. The ICE method is
applicable to one-, two- or three-dimensions. For further details, consult Harlow and Amsden
(1968, 1971), Roache (1976), and Browne (1978).

In the Porsching method (Porsching et al., 1971), a hydraulic network is modelled by a
series of nodes and links. The mass, momentum and energy conservation equations plus the
equation of state are simplified to a system of coupled first-order nonlinear ordinary
differential equations involving the flow rates, enthalpy and mass at each node. The use of a
convergent, implicit method, together with the help of a block inversion technique, produces
an efficient numerical integration procedure for the network equations.

For hyperbolic equations involving only two independent variables, x and t say, the
method of characteristics is widely used. This method finds special curves in the x-t plane,
called characteristic curves, along which the solution of the partial differential equation is
reduced to the integration of an ordinary differential equation. This ordinary equation is
generally integrated by numerical methods (Hancox and McDonald, 1980). Carver (1980)
proposed the pseudo characteristic method to solve the resulting system of ordinary
differential equations using the method of lines approach.
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