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THE CANDU POWER REACTOR SYSTEM: A PREFACE

The CANDU nuclear power reactor system has been under development since
the early 1950's by Atomic Energy of Canada Limited (AECL) in collaboration
with Canadian industry. CANDU stands for CANada Deuterium Uranium indicating
that the reactor uses heavy water or deuterium oxide as moderator, and natural
uranium as fuel. The success of the system is indicated by the record breaking
performance of the Pickering Generating Station of Ontario Hydro on the shores
of Lake Ontario close to the metropolitan area of Toronto (Fig. P1).

The four 500 MWe Pickering reactors are known as CANDU-PHW units, to
indicate that the coolant is heavy water under pressure. Although the PHW
system has received the most attention so far and has been developed to a
commercial stage at Douglas Point Pickering and Bruce, other versions are
under consideration. For example, a prototype station using light water as
coolant was started up in 1971 at Gentilly, Quebec. Another version of CANDU
is the OCR for Organic Cooled Reactor. A research reactor using an organic
liquid coolant has been operating since 1965. Higher temperatures are a
feature which could be of great value when other fuel cycles are being con-
sidered or for applications where high temperature steam is required.

The outstanding advantage of the CANDU system is its ability to
operate with natural uranium fuel. This permits the purchase of uranium
feedstock on the world market without limitations of enrichment services.
In addition, the CANDU system extracts more electrical energy per unit of
uranium feedstock than any other commercially proven reactor system.

Canada has abundant reserves of uranium but no enrichment plant so
that the ability to utilize natural uranium fuel is particularly attractive
from a national standpoint, both in terms of balance of payments and freedom
from external political and economic pressures. These considerations have
been significant factors in the longstanding support given to the development
of the CANDU system by the Federal Government.

The major commercial utilization of the CANDU system in Canada has
been within the Ontario Hydro system. The large size of this system, the
absence in Ontario of significant fossil fuel reserves, and the harnessing of
most of the available hydraulic sites, has led Ontario Hydro to commit a
series of large multi-unit CANDU statioms. Over 35% of electrical demand in
Ontario is generated by nuclear power.

Hydro-Quebec's initial entry to the nuclear power field was via the
construction and subsequent operation of the Gentilly-1 nuclear power station.
This station, owned by AECL, employs the prototype CANDU~BLW reactor. While
Quebec still has substantial unharnessed hydraulic reserves (primarily in
the James Bay region), Hydro-Quebec has constructed a 600 MWe CANDU station
in their system at the Gentilly site.

The potential attractiveness of this size led AECL to adopt it as a
standard unit. Substantial success has already been achieved in marketing
this unit design. 1In addition to Gentilly-2 being constructed by Hydro-Quebec,
AECL has a contract (in partnership with an Italian company) to supply one
unit to Argentina (Cordoba). The New Brunswick Electric Power Commission
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WORLD POWER REACTOR LIFETIME PERFORMANCE

1 CANADA Pickering-2

2 W.GERMANY  Stade-1

3 CANADA Pickering-1

4 CANADA Bruce 4

5 CANADA Bruce 3

6 CANADA Pickering-4

7 CANADA Pickering-3

8 USA Point Beach 2

9 USA Connecticut Yankee
10 Barsebaeck 2

SWEDEN

542 MW
662 MW
542 MW
791 MW
791 MW
542 MW
542 MW
524 MW
602 MW
600 MW

84.5%
83.5%
83.3%
78.5%
78.2%
77.6%
77.5%
77.4%
75.4%
74.5%

CUMULATIVE LOAD FACTORS FOR REACTORS OVER 500 MW(e)
TO END OF SEPTEMBER 1980

Station " Cumulative Load Type

_ Factor %

Bruce-3 820 CANDU
Stade-1 81.2 PWR
Pickering-2 80.9 CANDU
Pickering-1 80.3 CANDU
Point Beach-2 77.4 PWR
Pickering-4 77.3 CANDU
Pickering-3 75.4 CANDU
Prairie Island-2 75.2 PWR
Calvert Cliffs-2 74.7 PWR
Connecticut Yankee 74.8 PWR
Bruce-4 73.5 CANDU
Bruce-1 73.0 CANDU

REF: NUCLEAR ENGINEERING INTERNATIONAL VOL. 25, NO. 307, 1980

Country

Annual load Number and size

Cumuilative load Number and size

factor% of reactors factor % of reactors
Canada 76.11 10 (5818 MWe) 64.90 10 (5818 MWae)
Europe 58.35 53 (38500.3 MWe) 56.48 57 (42284.3 MWe)
USA 56.76 68 (54684 MiWe) 54.74 68 (54658 MWe)
Japan 48.41 20 (13852 MWe) 52.40 22 (15117 MWe)
UK §1.77 22 (7949.3 MWe) 53.24 22 (7949.3 MWe)
France 56.63 10 (6429 MWe) 51.87 12 (8343 MWe)
W. Germany 50.49 10 (14299 MWe) 54.95 11 (15199 MWae)

Source: Nuclear Engineering Internationai (March 1980)

FIGURE P}
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has built one unit at a site near St. John (Point Lepreau), and another unit
is under comstruction in the Republic of Korea. The four CANDU-600's are

at various stages of completeness with Point Lepreau presently approaching
full power.

Summaries for performance and penetration of CANDU reactors are given
in Figs. P1, P2, and P3. While CANDU carries an initial cost penalty due to
the high price of heavy water, this is more than offset during an operating
life-time due to cheap natural uranium fuel, efficient burn-up and inherent
safety features of the reactor. Indeed the CANDU PHW reactor design with
its heavy water moderator, natural uranium fuel and pressure tube concept has
certain characteristics that obviate the need for a high strength pressure
vessel. Instead, the pressure boundaries are the pressure tubes which are
considerably simpler to manufacture to the required quality. Further, experi-
mental evidence and station performance indicates that pressure tubes will
leak before they break since their thickness is much less than the critical
crack length. Such leaks can be readily detected by monitoring the moisture
content and the pressure in the gas annulus between the pressure tube and
the calandria tube. This is done on a continuous basis. In addition, ultra-
sonic scanning devices are mounted on the fuelling machine for periodic in-
service inspection of the pressure tubes.

The pressure tube design permits the heat transport system to be
subdivided into two separate coolant circuits (loops). In the case of a
hypothetical loss of "coolant accident, this design feature restricts the
consequences of the loss of coolant accident to just one of the loops. This
simplifies the design and considerably reduces the burden on the emergency
injection and the containment system design.

All reactivity devices are located in guide tubes positioned in the
low pressure moderator environment. Thus, there exists no mechanism for
rapid ejecticn of any of these reactivity devices, nor can they drop out of
the core. The maximum reactivity rates achievable by driving all control
reactivity devices together in the wrong direction is about 0.35 mk per
second and well within the design capabilities of the protective systems.

Fuel, coolant and moderator are arranged in a square lattice with a
28.6 cm pitch. This is a near optimum geometry from a reactivity standpoint.
Even if all fuel channels were either pushed apart or brought together for
whatever reason the net reactivity increase would be at most, 1 milli-k where
k is the neutron multiplication constant; and this only for the ideal case of
uniform rearrangement. This is, of course, physically impossible. For the
case where one, or a few fuel channels are displaced, the net reactivity would
at worst not be affected at all or it would decrease, thereby shutting down
the reactor. Also, since a lattice of natural wranium and light water cannot
be made critical in any concentration, there can be no criticality problems in
the spent fuel bay of CANDU reactors.

The pressure tube design also makes on-power fuelling a possibility.
On-power fuelling results in a reactor with very low reactivity control
requirements. Typically, the reactivity decay rate in 600 MW(e) CANDU PHW
reactors is about 0.4 mk per day. This is compensated by fuelling about

A N
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two channels per day. 1In addition, the pressure tube concept provides an
excellent opportunity for locating fuel defects and the on-power fuelling
permits the removal of defective fuel as soon as it is detected. This
helps to keep the heat transport system essentially free from fission
product activity,

Finally, the separation of the moderator from the high pressure heat
transport coolant allows the moderator to act under certain circumstances as
an additional heat sink for the fuel decay heat, e.g., where one might hypothe-
size a failure or impairment in the emergency core cooling system following
a primary loss of coolant accident.

Thermalhydraulics, which is the central theme of this course, is
concerned with safe and effective heat removal from the reactor core for
power production. The basic CANDU design, while favourable to both safety
and efficiency, must be studied in detail for the development of optimal
structures and strategies. The following lecture notes represent the state-
of-the-art of this challenging branch of nuclear engineering.

vii
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GLOSSARY OF ABBPEVIATIONS AND ACRONYMS

AE Acoustic Emission

AECB Atomic Energy Control Board

AESOP Atomic Energy Simulation of Optimization
ASDV Atmospheric Steam Discharge Valve
ASSERT Advanced'Solution of Subchannel Equations in Reactor Thermalhydraulics
ASTM American Society for Testing Materials
BLC Boiler Level Control

BLW Boiling Light Water

BOILER Boiler

"BPC Boiler Pressure Controller

CCPp Critical Channel Power

CHF Critical Heat Flux

CPR Critical Power Ratio

CRNL Chalk River Nuclear Laboratories

CRT Cathode Ray Tube

CSA Canadian Standards Association

CSbv Condenser Steam Discharge Valve

CSNI Canadian Standards for the Nuclear Industry
DBE Design Base Earthquake

DCC Digital Control Computer

DF-ET Drift Flux-~Equal Temperature

DF-UT Drift Flux-Unequal Temperature

DNB Departure from Nucleate Boiling

ECC Emergency Core Cooling

ECI Emergency Core Injection

EFPH Effective Full Power Hours

EVET Equal Velocity Equal Temperature

EVUT Equal Velocity-Unequal Temperature

EWS Emergency Water Supply

FBR Feed, Bleed and Relief

FP Full Power

HEM Homogeneous‘Equilibrium Model

HTS Heat Transport System

HWP Heavy Water Plant

HYDNA Hydraulic Network Analysis

I&C Instrumentation and Control

IBIF Intermittent Buoyancy Induced Flow
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ICRP
LOC
LOCA
LOC/LOECC

" LOP
LOR
MCCR
MCS
MHD
milli-k
NPD
NPSH
NUCIRC
OECD
PGSA
PHTS
PHW
PHWR
PRESCON2
QA
RAMA
R&M
RB
rem
RIH
ROH
RTD
SDM
SOPHT
SRV
TMI
TOFFEA
UvuT
VB
Ve
WNRE

International Commission on Radiological Protection
Loss of Coolant

Loss of Coolant Accident

Loss of Coolant with Coincident Loss of Emergency Core Cooling
Loss of Pumping

Loss of Regulation

Ministry of Corporate and Consumer Relations
Maintenance Cooling System

Magneto hydrodynamics

See p. 13-7

Nuclear Power Demonstration

Net Positive Suction Head

Nuclear Circuits

Organization for Economic Co-operation and Development
Pickering Generating Station A

Primary Heat Transport System

Pressurized Heavy Water

Pressurized Heavy Water Reactor

Pressure Containment

Quality Assurance

Reactor Analysis Implicit Algorithm
Reliability and Maintenance

Reactor Building

rSntgen or rad equivalent mammal

Reactor Inlet Header

Reactor Outlet Header

Resistance Temperature Detectors

Safety Design Matrices

Simulation of Primary Heat Transport

Safety Relief Valve

Three Mile Island

Two Fluid Flow Equation Analysis

Unequal Velocity Unequal Temperature

Vacuum Building

Vacuum Chamber

Whiteshell Nuclear Research Establishment
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