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ABSTRACT

Finite difference techniques for solving the Poisson equation and
a steady-state advection-diffusion type equation are_discussed. These
include direct methods, the Jacobi and Gauss-Seidel iteration methods,
the successive overrelation method, and the alternating difection
implicit method for the Poisson equation. Upwind difference methods are
used to solve the steady-state advection-diffusion type equation. The
Galerkin method and its modifications are derived as special cases of
the method of weighted residuals. The finite element method is derived
via the Galerkin formulation. Monte Carlo methods are introduced. A
Monte Carlo procedure for solving Laplace's equation with Dirichlet

boundary conditions is presented.

9.1 Introduction

The behaviour of a fluid experiencing convection heat transfer is
described by a system of partial differential equations expressing the
conservation of mass, momentum, and energy. The fundamental equétions

for two-dimensional incompressible flow of a Newtonian fluid with no
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body forces, no dissipation term and constant properties can be

expressed in nondimensional form as:

9§ > 1 2
at',‘ﬁ (€V) + 3= V%6 (9.1
V2¢:£, (902)
aT R N
ﬁ__v (Tv) + 55 V°T , (9.3)
where
Bvx v
£ = vorticity = Tl 5;1 ; 9.4)
- i -éi ..__ai-
¢ = stream function, with v = 3y and Vy = = ok ) (9.5)
= nondimensional temperature;
v o= (vx, vy) = nondimensional velocity vector;
Re = Reynold's No.;
Pe = Peclet No.

In general, the full system of Equations 9.1-9.5 must be solved
simultaneously.

In this chapter, some numerical methods for solving the Poisson
equation and a steady-state advection-diffusion type equation as shown
below are considered.

v = 0 ’ (9.6)
" and

(we?)u=Dv% (9.7
where ; is a vector velocity field, and D is a diffusion coefficient.
Solution of these equations are of central importance 1in the

multidimensional modelling of single phase flow and two-phase flow (Chapt. 8)
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9.2 Derivation of Finite Difference Equations to Poisson's Equation

Consider the two-dimensional Poisson's equation in a region R, with

boundary 3,

2 22
9 ; (X,y) + 0 uz(x,y) = f(x,y), for (x,y) in R (9.8)
ax ey

with the boundary condition

u(x,y) = gix,y), for (x,y) on S (9.9)

A rectangular grid on the region R is set up so that every point (i,j)
has four neighbours, as shown in Fig. 9.1. A point (i,j) of the grid is
classified as an interior point if its four neighbours lie within R, or
on S, but not outside S. Those points in R or S, which are not interior

points, are classified as boundary points.

~

(1,JHL) \ | outside R
(41,343} (=1 f4 ‘\\\\\ :
(1.3-1 \

o

inside R s ET R

Fig. 9.1 Rectangular Grid

Approximating Eq. 9.8 at each interior point by finite difference,

Viet,d TPV Vaeny Yager T Vi
2 .

Ax2 Ay 1.3
where vi,j is the approximate solution to u(xi,yj) and fi.j = f(xi,yj).
At each boundary point
vi,j = g(xi.yj) (9.11)
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By eliminating from Eq. 9.10 the values of v at the boundary using Eq.
9.11, a system of n linear equations in n values of vy 3 for the approx-

imate function at each interior point is obtained. Designating the
interior points as Vies this system of equation can be put in the form

AV = b (9.12)
where v = (v1. Vor V3o ey vn) and A is an nxn matrix whose entries are
determined by the coefficients of the difference equation, and b is
determined by the boundary conditions and the known terms in the
differential equation., A solution to Eq. 9.12 exists and is unique if
and only if A is nonsingular, then

v :=A"B (9.13)

9.3 Direct Methods

The most elementary methods for solving Eq. 9.12 are Cramer's rule
and various forms of Gaussian elimination. Unfortunately, for most
systems of interest, the size of the matrix A 1is so large that the
derivation of the inverse by any direct method requires an excessive
amount of calculation, in addition to considerations of round-off
errors, In recent years, highly efficient direct methods have been

developed for some special cases.

9.4 Jacobi and Gauss-Seidel Iteration Method

The Jacobi method, which 1s a special case of Richardson's method,

and the Gauss-Seidel method, also known as Liebman's method, are

iterative methods. Basically, each method involves transferring all the
of f~diagonal terms of Eq. 9.12 to the right hand side, so that the 1th

equation leads to
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vy = (bi - Z aiJ vj)/aii (9.14)

By starting with an initial guess of vJ on the right hand side, new

approximate values of v, can be computed from Eq. 9.14. This procedure

i
is repeated until the computed values show little change. It can be
shown that for the finite difference equations from Eq. 9.8 and 9.9, the
above 1terative method is always convergent. The final solution is
independent of the choice of starting values, although a poor initial
guess will require more iterations for convergence.

In the Jacobi method, the old values of v are always used in the

right-hand side of Eq. 9.14 until a complete set of new values of v has

been computed, Rearranging Eq. 9.10, and letting 8 mesh aspect ratio =

Ax/by,
k+1 1 k k 2k 2. k 2
Vi3 T Joregdy Laet,d T Vien s T BV ger ¢ BTV g T 0Ty gl (9419)

where the superscript, k, refers to the iteration count.
In the Gauss-Seidel method, the most recently available values of v

are always used in the right-hand side of Eq. 9.14. That is,

(9.16)

<
]

k+1 1 | k k+1 2 k 2 k+1 2

— | v, + v + B v - Ax J
i,3 2(1+82) 1+j,j i-1,3 i,3+1 i,]

In the solution of Laplace's equation, the Gauss-Seidel method converges

more rapidly than the Jacobi method.

9.5 Successive Overrelation (SOR) Method

Subtracting vf j from both sides of Eq. (9.16) and regrouping gives

’
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k+1 k 1 -k k+1 2k 2 k+1

v = *8 vivj"'1

3T T ey Vet T Ve T B g

2 2 k
- Ax fi,j - 2(1487) vi,jJ (9.17)

Denote the right hand side of Eq. 9.17 by ri 3’ the residual. Then
v

K+1 k
r = Vv -V
13 1,3 1,3
As vk approaches vk+1 r approaches zero Therefore r is a mea-
1,3 1,3 1.3 ) 1,

sure of how much the present estimate is in error at (i,j). In the SOR

method, the residual is multiplied by a relaxation factor w. That is,

vk+1 - vk + wr
1,37 V1,5 7 9T,;

For w=1, the procedure is identical to the Gauss-Seidel method.

(9.18)

However, for a choice of w in the range of 1<w<2, convergence is more
rapid. Depending on the mesh size, the shape of the domain, the type of
boundary conditions, an "optimum™ value wo based on the asymptotic

reduction of the most resistant error can be found.

9.6 Alternating Direction Implicit (ADI) Method

By noting that the solution of the elliptic equation may be
regarded as the limiting solution (for long times) of the corresponding
time-dependent initial value parabolic problem, the solution to Upg = U
+ uyy ~ f is sought instead. Successive time steps of the solution may
be viewed as successive steps of iteration in the elliptic problem. The
boundary conditions are identical for both cases. Using the alternating
direction implicit method of Peaceman and Rachford, two finite

difference equations are obtained.
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Vk+1/2 - vk Vk+1/2 - 2Vk+1/2 . vk+1/2
i, 1§ | |deled 1,3 i-1,3
Ats2 Ax2
(9.19)
k K k
sV T g Y, |
Ay2 i,]
Vg+1 _ vg+1/2 v5+1/% _ 2vl$+1/2 . vk+1/?
i,J i,jg [ iv1,J i g i-1,3
At/2 - 2
AX
(9.20)
k+1 K+1 K+1
e Va5 T3 VY e .
Ay2 i,
Rearranging, letting the Ax=Ay=a, and the iteration parameter, p = ggf ,
At
k+1/2 k+1/2 k+1/2 _ Kk Kk k
Vi, T @RV T e vy e DY g T @Y
(9.21)
+ a2f. X
1,)
k _ k+1/2 k+1/2 k+1/2.
Vi gel (2+p)vi'j * Y g G [vi+1,j - (2-p)vi’j + Vi-1,jJ
(9.22)
+ a2f

Eq. 9.21 and Eq. 9.22 are 1implicit in x and y, respectively. The first
set of linear equations 1is solved for the intermediate values vk+1/2.
which are then used in the 301ution of second set of linear equationsf
Note that each set of equations involves a tridiagonal coefficient
matrix. Just as in the case of the SOR method, an optimum iteration
parameter p may be determined. The real strength of the ADI method
comes in choosing a sequence of iteration parameters, Py ? which replaces

p in Eq. 9.21 and Eq. 9.22. Methods are available for obtaining "good"

or "optimum" sequences.
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9.7 Upwind Difference Methods for Steady-State Advection-Diffusion

Type Equation

Consider a steady-state advection-diffusion type equation in one

dimension,

2

u d7u .
wxﬁ-D;—5=0 (9.23)
X

Q

Approximating the derivatives in the above equation by central
difference, the finite difference approximation to Eq. 9.23 can be
written as,

v -v v
( i+1 i—1) =D ( i+1

wx 240x

-2V, + vi_1

™| e

Yy = 0 (9.24)
Ax

The iterative solution of a system of linear equations like Eq. 9.24
will converge only if certain conditions on the coefficients are
satisfied. One way of expressing these conditions is that the
coefficient matrix must be diagonally dominant. It can be shown that
this requires the absolute value of the coefficient of \ to be at least
as large as the sum of the absolute values of all the other
coefficients. For those cases where }wxi/D > 1, Eq. 9.24 loses
diagonal dominance, usually leading to a loss of stability. A method
used to overcome this instability is the upwind differencing or
donor-cell technique. A one-sided difference is used for the advection

term, the direction being "upwind", 1.e. forward if Wy < 0 and backward

if Wy > 0. That is,

v - v ' - 2v, + Vv
W (it 1y _p (i i -1 _ o ifw <0 (9.25)
X A% X
Ax
9-8
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11 " 2V * Vi

Ax

Vi T Vi v
————) =D ( ) =0 ifw >0 (9.26)

wx ( Ax

It can easily be shown that coefficients of Equations 9.25 and 9.26
satisfy the diagonal dominance requirement. Therefore, iterative
solutions to these equations are numerically stable. Similar analysis
can be extended to multidimensional situations. However, the above
procedure possesses only first order accuracy (truncation errors
proportional to A4x). Higher order upwind differencing techniques
(Roache, 1972, Chang et al. 1974) are available to improve on the

accuracy of the finite difference approximations.

9.8 Galerkin Method and Its Modifications

The traditional Galerkin method is a special case of the method of
weighted residuals. The method of weighted residuals is an approximate
method which seeks a solution to the exact solution in a global sense.
This may be contrasted to a Taylor series expansion which seeks an
accurate solution in the small region surrounding a single point in the
domain.

Consider the following equation:

L(u) = 0 9.27)
where L is a differential operator and Eq. 9.27 may be an ordinary
differential equation or partial differential equation of elliptic,
hyperbolic or parabolic type. The solution uzu(X) is sought within some
region R and boundary conditions are specified on S, the boundary of R,
namely that

N(u) = g(x) (9.28)
where N is a differential operator of lower order than L.
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The first step is to introduce a trial function.
—_ —_ n —
vix) = v (x) + j§1 ajhj(x) (9.29)
It is hoped that v is close to u, the exact solution, in some sense or
can be made so if n is large enough. The trial function is chosen to
satisfy the boundary conditions exactly. This is often done by making
vo satisfy the boundary conditions exactly, then the analytic function
hj(i) satisfy homogeneous boundary conditions. Since the approximate
solution should be capable of converging to the exact solution as n
approaches infinity, it is important that hj(i) are linearly independent
and chosen from a set of functions which is complete in the domain of
interest. The functional form of hj(i) may be suggested by the symmetry
of the problem, or a boundary condition, or the exact solution of a
related problem.
If Eq. 9.29 is substituted into Eq. 9.27, in general Eq. 9.27 is no
longer satisfied and a residual r is obtained,
L(v) = r(x, aj) (9.30)
The size and distribution of r in the domain can be used to assess the
accuracy of the solution. For v to be close to the exact solution, the
coefficients, aJ. are selected so that the residual is forced to be zero
4in an average sense,
jR r(x, aj) wk(§)dx=0. kK=1,2,...,0 (9.31)
where wk(i) represents one member of a family of weighting functions.
Since there are only n unknown coefficients, ag, az; cees A there can
only be n equations. Since each equation must be independent, so each

wk(i) must be an independent function. As n, the number of unknown
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coefficients in Eq. 9.29, is increased, the approximate solution is
expected to approach the exact solution. Or, the residual, r, is
expected to decrease as n increases.

There are various ways to choosing the weighting functions leading
to (1) the traditional Galerkin method, (2) the least squares method,
(3) the method of moments, and (4) the collocation method.

In the traditional Galerkin method,

W, (x) = h (%) (9.32)
i.e. the weighting functions are chosen from ihe same family as the
trial functions in Eq. 9.29. Therefore, the set of weighting functions
is a linearly independent and complete set in the region R.

In the least squares method,

3a ’ aj) (9.33)

This is equivalent to replacing Eq. 9.31 with the requirement that

2 = . -
J r© dX is a minimum.
R

In the method of moments,

W (R = (9.34)
In the collocation method,
wk(§) = § (i—ik) (9.35)

where § is the Dirac delta function. This choice of wk(i) reduces Eq.

9.31 to forcing r(x=x, ) = 0,

k

9.9 An Example -~ Poisson's Equation

Consider the two-dimensional Poisson's equation in a region R with

boundary S,
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2 2

0
£y +-37§ = £(x,y),  (x,y) in R (9.36)
9x ay

with the boundary conditions, u(x,y) = g(x,y), (x,y) on S (9.37)

Substituting the trial function, v, into Eq. 9.36, the residual becomes

2 2
v, i—;’ - £(x,y) (9.38)
3y

[+5]

|

r =

n

X
Imposing the Galerkin condition of Eq. 9.31 with Eq. 9.32,

2 2
/] r hj dx dy = [/ (3—% + 2—% -0 hj dx dy = 0 (9.39)
' X

R R 3 ay
Substituting Eq. 9.29 into Eq. 9.39 and rearranging,

32hi azhi a2v° 32v°
5=+ —5) hy dx dy = /] (f - 5 - 3 ) hydxdy (9.40)

X 3y R ax ay J

Loag [ (
i T 'R

Eq. 9.40 is of the simple form,

Qa==50 (9.41)
32hi aahi
with q. = [[ ( + ) h, dx dy
13 R ax®  ay2 I
32v° 82v°
and b, = /[ (- 5 = —3 ) hy dx dy
R X Yy

If the matrix Q is nonsingular, the solution is formally given by

3:-Q7 5 (9.42)

9.10 Finite Element Method

One difficulty of the direct application of the Galerkin method is

the choice of trial functions that satisfy the essential boundary
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conditions and also provide an adequate description of the geometry,
material and other characteristics of the problem. Another disadvantage
is that the matrix Q is dense, that is it has no obvious zero elements
and are ill-conditioned for large n, leading to inefficient and
inaccurate numerical algorithms. Consequently, the classical Galerkin
method is of 1limited use. With the advent of high-speed digital
computers, the idea of using approximating functions localized in a
small region was developed, leading to the finite element method.

The first stage of the method is to divide the region of solution
into a finite number of small, non-overlapping regions which are called
elements. The elements are connected only at a certain number of
discrete points on their common boundaries, These points plus a number

of specially chosen points inside the elements are called nodes.
4)

nodes

element

7 X
Fig. 9.2 Finite Element Discretization

An approximate solution, defined by,

n

X) = I N/(X) .
vix e j(x VJ (9.43)

is introduced. In Eq. 9.43, vJ are the values of v at node j. They
replace the unknown coefficients, aj, in Eq. 9.41, to become the
unknowns of the problem. Nj(§) are referred to as shape functions, with

the following property,
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1 at the 1th node

-4
"

(9.44)
0 at all other node.

An example of Ni(i) is shown in Fig. 9.3.

Fig. 9.3 Examples of a Shape Function

Substituting Eq. 9.43 into Eq. 9.31 and Eq. 9.32 and applying boundary
conditions, a system of n linear equations with n unknowns is obtained,
Jjust as in Eq. 9.41. However, there is one significant difference:
because of the localized nature of the shape functions Nj(§). the only
contribution.to qij come from the elements surrounding the ith node.
Since the matrix Q is sparse, i.e. there are many zero elements, Eq.
9.41 can be solved economically if the sparse character of Q is taken
advantage of.

One significant advantage of the finite element method comes from
reducing the integration over the whole domain to the sum of the
integrations over individual elements. Using an isoparametric
formulation (Zienkiewicz, 1971, Rao, 1982), a regular element can be
distorted to an irregular shape to handle arbitrary boundary contours

and the corresponding boundary conditions without the need for special

procedures.
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The convergence of the finite element solution to the exact
solution can be brought about in two ways: either the number of nodes
per element, i.e. the order of the approximating function, can be
increased with the element size fixed or else, by division of the domain
into smaller and smaller elements, with the number of nodes per element
fixed. 1In general, there is no fixed rule for determining the optimum
element size together with the optimum number of nodes per element.
This may have to determined on a case-by-case basis.

If the finite element solution is to converge to the exact
solution, the approximating function must satisfy completeness and
compatibility conditions for the problem. Let the integrands appearing
in the weightedlresidual Eq. 9.31 contain derivatives up to the mth
order. The compatibility condition requires that the shape function and
its partial derivatives up to the (m-1)th order must be continuous at
element boundaries. The completeness condition requires that the shape
function and its partial derivatives up to the mth order must be
continuous within each element. Note that it is sometimes possible to
reduce the order of the highest derivative appearing in the Eq. 9.31
using integration by parts, or equivalently, using Green's or Stokes'

theorems.

9.11 Monte Carlo Method

A Monte Carlo method is any procedure which involves the use of
statistical sampling techniques to approximate the solution of a
mathematical or physical problem. Monte Carlo methods are not known for
all problems nor do specific problems necessarily admit a unique Monte
Carlo procedure., There may exist different Monte Carlo methods for a

9-15
Copyright M.I.E.S. 1982



given problem, not obviously related to one another.

Monte Carlo methods can be used to solve either deterministic or
probabilistic problems. The main idea 1is either to construct a
stochastic model which is in agreement with the actual problem
analytically, or to simulate the whole problem directly. In both cases,
an element of randomness has to be introduced according to well-defined
rules. Then a large number of trials or plays is performed, the results
are observed, and finally a statistical analysis is undertaken in the
usual way. The advantages of the method are that even very difficult
problems can often be treated quite easily. The disadvantages are the
poor precision and the large number of trials which are necessary.

Monte Carlo methods have been used extensively in various branches
of nuclear engineering, e.g. neutron transport, radiation shielding,
minimum critical power ratios (Carter and Cashwell, 1975, Thompson and
Chen, 1970, Mazumdar 1972, NEDO-10958, 1973). In the present
discussion, attention is focused on solving some partial differential
equations with Monte Carlo methods. Some familiarity' with basic
probability concepts 1is assumed. Thorough treatments may be found in

the standard texts, some of which are listed in the references.

9.12 An Example - Laplace's Equation

Consider a particle which is constrained to move on the lattice
points with integer coordinates (m,n) in the plane. At each step the

particle will move to one of the neighboring lattice points directly

above or below or directly to the right or left of the current position.
The four possible moves, from {(m,n) to (m+1,n), (m-1,n), (m,n+l1) or

(m,n-1), are each assumed to have probability 1/4. The particle
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describes a random path composed of such moves in succession, with the
new move randomly determined each time independently of the present
position and past history of the particle. Assuming that the particle
started at (0,0) there will be defined for each lattice point (m,n) and
for each integer Kk a probability P(m,n,k) that after Xk steps the
particle will be found at (m,n). 1In order to arrive, after k+!1 steps,
at (m,n) the particle must have been at one of the four neighbours after
the kt'h step. From each of these positions the probability is 1/4 for
the transition of the particle to (m,n). Thus P(m,n,k) satisfies the
following linear difference equation
P(m,n, k+1) = % [P(m+1,n,k) + P(m-1,n,k)

+ P(m,n+1,k) + P(m,n=1,k)] (9.45)
An elementary manipulation transforms Egq. 9.45 to

P(m,nk+1) = P(mn,k) = o { [P(mel,n,k) = 2P(myn,k) + P(me1,n,k)]

+ P(m,n+1,k) - 2P(m,n,k) + P(m,n-1,k)] (9.46)

Observe the similarity of the finite difference equation to the diffu-
sion equation, Pt = Q (Pxx + Pyy)' with first-order forward difference
and central differences in x and y with Ax = Ay = a,

P{m,n,k+1) - P(m,n,k) = EA% { [P(m+1,n,k) - 2P(m,n,k) + P(m-1,n,k)]

a
+ [P(m,n+1,k) - 2P(m,n,k) + P(m,n=-1,k)1 } (9.47)
which is the same as Eq. 9.47 with aAt/32 = 1/4,

If instead of starting with a particle at (0,0) for k=0, the
process (called a random walk) is started with a probability
distribution at (m,n) initially, the function P(m,n,k) may still be
interpreted as before and will still satisfy the same difference
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equation. The 1initial distribution of P(m,n,0) cofrespond to the
arbitrary initial function generating a particular solution of Eq. 9.46.

Random behaviour corresponding to the process (random walk)
described here may be sampled by establishing an appropriate
correspondence between ranges of random numbers and the decisions
required at each step. For example, the first draw of a random number
may determine the parﬁicle's initial point on the lattice, the second
may determine the first move, etc. A sequence of such draws will
determine a particular path, often referred to as a particle history. A
sample of histories of this kind is used to estimate P(m,n,k) for any
node (m,n) and for any Kk to which histories have been carried. The
estimate is.determined by counting the number of histories for which the
corresponding particles are at (m,n) after the kth step and dividing by
the sample size.

The statistical process just described is a Monte Carlo process.
The determination of random sampling numbers is usually done by
generating on the computer a sequence of pseudo-random numbers with a
suitable recurrence relation, A relation of the type

Faet S AT, (mod m) (9.48)
is often used, where A and m are constants whose optimal choice depends
upon the problem and the computer.

Suppose that random walks of the type just described are begun in
the interior of a bounded region enclosed by a specific boundary lattice
of points (mi.ni). For purposes of this discussion, a boundary
sebarates the interior from the exterior of the region by ensuring that
any admissible walk, of the type used above, must contain a boundary

point on the path between a pair of points, one of which is inside and
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the other outside.

The random walks described above will now be modified by
terminating any walk upon its first arrival at the boundary. In the
language of the physicist, the boundary is an "absorbing boundary" for
the particle. It can be proved that the walks eventually terminate in
the sense that the probability of remaining forever in the region is
zero. Therefore, it is appropriate to attach to any starting point
(m,n) a function P(mi,ni,m,n) which is the probability that a particle
starting at (m,n) terminates its history at boundary point (mi.ni). If
a function V(mi.ni) is initially defined on the boundary, the expected
value of U is

EW) = V(m,n) = ) U(m, ,n;) Plm,n, .m0, (9.49)
i

In other words, if the value U(mi.ni) is attached to all walks

terminating at (mi.ni), then V(m,n) is the expected terminal value for
walks starting at (m,n). Of course, V(mi,ni) = U(mi.ni). As before
V(m,n) satisfies the difference equation

V(mn) = [V(me1,n) + V(n=1,n) + V(mn+1) + V(mn-1)]  (9.50)
This follows directly from the fact that, of the random walks
originating at (m,n), one fourth become new random walks originating at
each of the four neighbouring points on the lattice. The analogous
differential equation to Eq. 9.50 is Laplace's Equation with Dirichlet
boundary conditions specified by U.

32y . 22y
2 2

=0 (9.51)
oy

This random walk can serve as a basis for the statistical

estimation of V(m,n) at a single interior point by starting a number of
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particle histories at that point and attaching to each history the value
of U(mi,ni) assigned to the boundary point (mi,ni) where that walk
terminates. In this way the method leads to an approximate value to the
solution at a single point without carrying out the usual simultaneous
solution by direct methods or iteration.

Monte Carlo methods have been employed on a great variety of
problems and are especially useful on molecular dynamics, and flow
problems. It is not particularly convenient because of the relatively
long running times to obtain reasonable answers. However, it is the
only feasible method for many complex problems in science and

engineering.
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