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ABSTRACT

Components of the reactor system are identified in which multidimen-
sional computational thermalhydraulics can be used to advantage. Models of
single~ and two-phase flow are reviewed. Suitable computational algorithms
are introduced briefly and some example applications are given.

1.0 INTRODUCTION

As a nuclear reactor system relies entirely on fluid circuits for
energy transport, mathematical modelling of thermalhydraulic phenomena
plays an important role in reactor design and development, and methods of
improving the accuracy and efficiency of thermalhydraulic computations are
sought continually. A simplified fluid circuit diagram of a CANDU reactor
is shown in Figure 1. Throughout most of the piping network, the fluid
behaviour may be adequately described by one-dimensional (cross—sectional
averaged) models such as those described earlier. However, in the reactor
fuel channel, flow must distribute itself amongst the intricate flow pas-
sages of the fuel bundle. In the secondary side of the steam generator,
and in the calandria, the flow distribution is also complex. One-dimen-
sional analysis is adequate to simulate overall or bulk energy transfer,
but multi~dimensional analysis is necessary to model detailed local distri-
bution of flows and temperatures in any of these gometrically complex
components. It 1s interesting to note that all these components have a
similar internal structure, that is, flow passes through some form of rod
or tube arraye.
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Figure l. Simplified View of CANDU Reactor

2.0 MODELS OF SINGLE-PHASE FLOW

The first step in any computation is to decide on a flow model. The
most complicated available model need normally not be used; simplifying
assumptions are frequently valid and may reduce the complexity of the
equations to be solved.

Single-phase flow is normally modelled adequately by solving the
conservation equations of mass, momentum, and energy. The exact form of
the equations will depend first on whether the fluid should be considered
incompressible or compressible and secondly whether the fluid should be
considered inviscid or viscous. These decisions affect both the form of
the equations and the behavioural modes of the solution.

The above considerations are common to single or multidimensional
form. However, the problem of turbulence modelling is peculiar to multi-
dimensional flow modelling. The model of turbulence exerts influence only
by means of its effects on pressure drop in a lD calculation, but it deter-
mines velocity distribution in two and three dimensions. It is usually
modelled by effective viscosityl) and a suitable means of computing the
distribution of effective viscosity is sought. This may be introduced by
algebraic relationships or the more detailed models involving further dif-
ferential equations of transport. It should be emphasized that additional
differential equations thus introduced are not governing equations of the
flow field but merely part of the turbulent model.



Frequently in incompressible flow, the energy equation is decoupled
from the flow field solution by using the Boussinesq approximationz). This
considers the density field to be invariant throughout the equations.
Buoyancy effects are then approximated by making the density in the momen—
tum equation gravity term only a function of temperature.

3.0 GEOMETRIC FRAMEWORK

A model of the geometries required as a framework for the analysis.
The form is often dictated by the hardware. Alternat&ye computational
frameworks for rod array systems are received by Shah™’.

Although the finite element method lends itself readily to ficting
complex external boundaries, it has not often been used for systems with
complex internal boundaries. Instead the equations have usually been
formulated for finite control volumes and integrated in finite difference
form. .

Except for the 1D case, the simplest and most natural geometric divi-
sion of a rod array is by subchannel. Subchannels are readily defined as
communicating flow channels bounded by rod surfaces, and fictitious lines
between rod centres. Each subchannel is divided into number of axial
control volumes.

An alternative approach is to impose an orthogonal coordinate system
on the entire flow vessel and represent the internal hardware by distri-
buted resistances and heat sources. This classic 'porous medium' approach
is more suitable for geometries in which rods are densely packed and
information on overall flow distribution inside the rod array is required
rather than details of each individual subchannel. Here porosities are
assigned as the fraction of each control volume avallable to the fluid,
i.e., not occupied by hardware, and flow area blockages are computed by
suitably averaging at control volume interfaces.

A more precise procedure is to assign true values of area blockages at
control volumes faces rather than approximate them by averaging. This
permits a more accurate representation of geometries like fuel bundles in
which the control volumes chosen do not contain sevegal rods, but may in
fact contain few rods, a partial rod or none at all4 .

In either form, however, the porosity concept is still an artifact; it
does not reduce to the true solution in the limit as zero velocity cannot
be imposed at all solid surfaces. In fact, standard finite element methods
do not so reduce either. This degree of fidelity can be achieved only by
using finely divided body fitted coordinates3).

The examples in this paper are restricted to the subchannel and porous
medium formulations. Some of their features are summarized in Figure 2.
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4,0 SOLUTION OF THE SINGLE~-PHASE FLOW EQUATIONS

4,1 Statement of the Equations

The differential equations of mass, momentum and energy are expressed
for each particular control volume and are to be solved for all control
volumes. In one-dimensional analyses, solutions are frequently obtained
simultaneously for all flow variables throughout the field. However,
equation systems resulting from multidimensional analyses are too large to
permit simultaneous solution and some form of segmentation of the problem
is required with iteration to merge the segments.

4.2 Reduction to Discretized Form

The conservation equations are given in detail in Table l. In order
to solve the equations it is necessary to write them in discrete form with
reference to finite control volumes. To maintain continuous definition of
all variables it is important that all variables are evaluated correctly
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TABLE 1

Conservation Equations for Three Dimensional Analysis of a Single
or Homogeneous Two-Phase Flow Field, including terms catering for
transients, porosity, turbulent viscosity and compressibility
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where averages across grid points are required. The concept of staggered
grid facilitates this. Scalar variables such as pressure, density and
enthalpy are stored at primary node points, whereas velocities are consid~-
ered to act between pressures as shown in Figure 3. The momentum equations
are thus written for control volumes centered on velocities, whereas the
continuity and energy equations are centered on the primary nodes.
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Figure 3. Staggered mesh for Three Dimensional Computation

Most common schemes for multidimensional flow originate from one of
two major sources, the ICES) procedures developed at LASL and the
SIMPLE 6) procedures from Imperial College. Both use the staggered grid
concept, although the nomenclature is somewhat different, and the ICE
procedures solve the equations in differential form, whereas SIMPLE
disciples prefer to integrate about the control volume. Both apply equally
well to 1, 2 and 3D situations. The 1D momentum equation is used as an
example of each philosophy in Table 2. It is apparent that the resulting
equations are equivalent.

4.3 Solution of the Equation Set

The resulting equation set has four primary variables: velocity (three
components), density, enthalpy and pressure. These are linked by three
conservation equations and the equation of state (neglecting viscosity for
the moment).

It is convenient for illustration purposes to now write the continuity
and momentum equations from Table 1 in simplified form using vector
notation.
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Discretization of Simplified Momentum Equation
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in Figure 3.
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Both the SIMPLE and ICE schemes are based on solving the momentum
equations for a first estimate of each velocity component, and also extrac-
ting a pressure equation from continuity consideratioms. In general, each
momentum equation is reduced by appropriate discretization, integration and
linearization to an algebraic equation, which can be written

(a_(pu) = Ean(pu)m +b(B, - P)+c]l, 1=1,3 cer (4)

This links the mass flux component (pu) at the point m to neighbouring mass
fluxes in all directions, and to the pressure gradient in the 1 direction.
Similarly, the continuity equation can be reduced to a discrete form
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The coefficients a in (4) absorb the nonlinearity of the momentum

equations, coefficients a and c may incorporate transient terms, e is the
area available to the fluid at the appropriate control volume face.

First estimates of each velocity component u;, may be obtained by
solving equations (4) using an assumed pressure field. When these are
inserted in (5), however, the equation will not exactly balance but
instead, compute a divergence D because of the nonlinearities and inaccur-
racies in the assumed pressure field. However, a new velocity field which
will more closely fulfill continuity may be obtained by computing the
pressure changes required to drive D to zero for the next iteration mtl.
The Newton=-Raphson technique establishes these to be
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Combining (8) and (9) gives a matrix equation for the pressure change
field, which can be written in general form

qdP = Yq dP_ -D eee (10)

Equation (9) can be used to solve for the required pressure change
field, which in turn 1is applied to correct the velocities according to
equation (10). The entire process must be iterated to converge through the
nonlinearities.

It is useful to note that equations (9) and (10), and in fact most
other relevant transport equations, can be written in a general form

a¢ - tag =5 eee (11)
n

This is a general matrix equation which relates a variable ¢ at the point m
to its neighbours at points n. All other variables are collected in the
source term, S. Thus the same matrix algorithm may be used to solve all
such equations. Equation (l11) can be one-, two— or three—dimensional.
Direct solutions are expensive, so inner iteration may be used to

solve (l11). Iteration is all the more economical, as (ll1) itself need not
be iterated to converge as the whole process (4) to (10) is repeated.

The above sequence is the foundation of the flow field selution. In
single—-phase flow the energy equation is not closely coupled. It can be
reduced to the form of equation (11) and solved subsequently to the flow
field. The equation of state is then used to determine the density field
or the Boussinesq term and the viscosity field may also be computed. The
iteration is then repeated from equation (1) using the new density,
viscosity and pressure fields until all fields converge.

The sequences above assume an elliptic flow field in which all boun~
dary conditions are known and the equations are solved simultaneously
throughout the field for the primary variable of each segment. In duct
flows with a linear axial pressure gradient the field may be assumed to be
parabolic. Entry values are known and the solution is marched downstream
using a two-dimensional elliptic step in each axial plane. For curved
ducts, or ducts with resistances, downstream conditions do influence the
flow upstream, so partially parabolic sequences may be used to iterate over
the marching sequence. These variations are reviewed by Patankar’’.
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5.0 A SINGLE-PHASE EXAMPLE - MODERATOR FLOW CIRCULATION IN A REACTOR
CALANDRIA

The example simulates flow in the moderator using a 2D application of
the SIMPLE techniqueg) A turbulence model and a finely divided grid was
required to simulate the entrainment of flow in the neighbourhood of injec—
tor nozzles, and the volumetric porosity concept was used to simulate the
pressure tube array. The model was compared with an adiabatic experiment,
and then extended to diabatic reactor conditions. This work is described
fully in reference 8. The illustration used here in Figure 4 is the adia-

batic comparison from reference 8 showing agreement between the computed
and measured velocity fields.

Moderator flow has also been simulated in 3D9). Because the study was
in 3D it had to use a coarser grid. It did not incorporate a turbulence
model.
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Figure 4. Moderator Simulation
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(c) Measured Velocity Field
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6.0 MODELS OF TWO-PHASE FLOW

The assumption of equilibrium produces the simplest model in which the
phases are taken to be homogeneously mixed, and to have equal velocity and
equal temperature, hence the terminology EVET model. The two—phase mixture
is treated as a single fictitious fluid having properties determined solely
by the relative proportion by weight (quality) of vapour in the mixture.
Thus the partial differential equations to be solved are the same as for
single-phase flow: conservation of mass, momentum and energy of the
mixture; algebraic relationships cater for the two-phase properties and the
equation of state for the mixture. The homogeneous model is suitable for
conditions in which departures from mechanical and thermal equilibrium are
known to be minimal.

For cases in which gravitational or centrifugal forces are known to
produce a tendency for phases to travel at different speeds, a two-velocity
model is required, and an additional relationship is required for relative
velocity. FEarly separated flow models used void correlation instead of the
equation of state and a simple numeric slip factor to impose the higher
velocity of the vapour phase in vertical flow. This was later quantified
by relating relative velocity to the rise velocity of vapour bubbles in
liquid and radial distribution of vapour under various conditions. This
simple drift flux model, also referred to as DF-ET, unequal velocity equal
temperature, uses algebraic relationship for relative velocity, and hence
still requires the solution of the same three partial differential equa-
tions of conservation, but an additional equation, usually based on gaseous
phase continuity, 1s required for void distribution.

None of the above models permits the temperature of either phase to
depart from saturation. In order to simulate non—equilibrium phenomena
such as subcooled boiling, superheated liquid and flashing, etc., a mechan-
ism which permits these effects must be added. Again, early studies used
algebraic relationships, but more rigorous models now use a separate energy
equation, and equation of state for each phase and model heat transfer to
and between phases. The EVUT model is, therefore, also a four equation
model.

The 'hdvanced drift fluxX' DF-UT model is a combination of both of the
above, and, therefore, requires the solution of five conservation equa-
tions, a mixture momentum equation, two continuity equations and two energy
equations.

Finally, the full six equation, two-fluid model or WVUT abandons the algebraic

definite of relative velocity and instead computes phase velocities using
two momentum equations containing models of wall to fluid and fluid to
fluid stresses.

It is apparent that with each level of complexity of the two-phase
model, additional partial differential equations are added, and hence more
involved numerical schemes are required.

8-11
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7.0 EXAMPLE OF MULTIDIMENSIONAL ANALYSIS OF TWO-PHASE FLOW

7.} A Homogeneous Model Example = Secondary Side Flow
in a Steam Generator

An example of the application of multidimensional modelling of two-
phase flow is the analysis of secondary fluid flow in steam generators such
as the one shown in Figure 5. The secondary fluid flows up through a
fairly dense matrix of tubes which contain the primary fluid flow. The
tube matrix provides high frictional resistance and heat transter. These
yield large source terms in the equations which tend to dominate the compu-
tation. Thus the iterative method tends to converge quite readily.

Figure 5 also shows typical flow fields computed by the THIRST code, a

progra? for multidimensional thermalhydraulic analysis of steam genera-
tors
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The left side of the figure is a vertical cut through the steam
generator showing velocity profiles at each axial plane, while the right
side shows steam quality distribution on selected axial planes.

7.2 A Basic Drift Flux Model Example - Two-Phase Flow in Horizontal
Subchannels

The SAGA codell) uses the basic drift flux model to compute two-phase
tlow in horizontal or vertical communicating channels. The numerical
scheme Id as outlined above except that the drift flux model is used to
compute vapour cross flow from mixture cross flow. The vapour continuity
equation is then used to correct the axial vapour velocities for cross
flow, and all the mixture momentum equations are then assembled from sepa-
rated flow form. The SAGA code can thus compute phase separation due to
gravity. The code has been used to simulate the experiments of Tapucu
in whicB two identical horizontal parallel channels were used. In exper-
iment HRfl, water enters the lower channel and an air/water mixture enters
the upper channel. 1In experiment H -1 conditions are reversed, the air
entering the lower channel. Figure 6 shows computed and measured void
fraction profiles in the two channels. Full details of the SAGA code are
given in the user's guidell).
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SAGA Code Simulation of Tapucu Experiments
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7.3 Example of Advanced Drift Flux Model Applications - Two-Phase Flow imn
Horizontal Channels and Rod Bundles

The COBRA-IIIC subchannel codel3) has been used as a base from which
to develop the code ASSERT (Advanced Solution of Subchannel Equations in
Reactor Thermalhydraulics)l4). This extends the SAGA drift flux model to
include multiple subchannels and departure from saturation.

ASSERT has also been compared with the experiments of Tapuculz).

Shown in Figure 7 are computed and measured distributions of pressure, void
fraction and liquid mass flux in the two channels for experiment HD—l, and
a simplified sketch of the geometry. It is apparent that the high void or
donor channel develops a higher inlet pressure drop. This causes an inter-
esting exchange phenomenon. The lateral pressure gradient initially forces
both liquid and vapour currently from the donor to the receiver. Eventu-
ally, however, gravity effects predominate, and counter—current cross flow
is set up. Full details of these comparisons are given in reference l4.

As the goal of the ASSERT code development is the prediction of flow
distribution in horizontal fuel bundles, a further example is included to
illustrate that the model has progressed towards this goal.

Boiling water flow in a fictitious horizontal 7-rod bundle is simu-
lated using the unequal velocity, unequal temperature model. The redistri-
bution of flow due to end plates is modelled by local diffusion, otherwise
turbulent exchange between channels is modelled as mentioned above. Heat
input is assumed uniform. Typical volume fraction profiles are shown in
Figure 8. Note that the gravity effect dispels thermalhydraulic symmetry,
and subchannel 5, for example, assembles more steam than the geometrically
similar subchannel 3. The end plates tend to redistribute the flow towards
a more uniform distribution. No detailed experimental data on two—phase
flow distribution are yvet available, but such experiments are underway at
CRNL and will provide a basis for code validation.

7.4 Examples of Two Fluid Model Computation
Two-Phase Flow in Horizontal Channels and Vertical Elbows

The final examples are taken from thfS?diabatic 2D two-fluid code
TOFFEA (Two Fluid Flow Equation Analyses) . Again, the philosophy of the
computation is the same, but two momentum equations and two continuity
equations are used as summarized in Table 3. The gravitational and centri-
fugal forces tend to separate the fluids, the interphase drag terms coun-
teract this tendency. Reference 15 gives details of the manner in which
linear combinations of the continuity equations are assembled to derive the
pressure equation and the additional equation from which void fraction is
extracted.

The first application considered for illustration of the method is a
comparison with the experiments of Gardner and Nellesl6). 1In these exper-
iments, air and water flow through a duct consisting of a vertical riser
followed by a 90° elbow and finally a horizontal section. Volume fraction
profiles were measured at various stations.

8-14
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TABLE 3

CONSERVATION EQUATIONS OF ADIABATIC TWO-DIMENSIONAL TWO-FLUID FLOW

Continuity
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The equations are written for fluid 1, analogous equations are written for
fluid 3.
The equatfons are converted to cartesian form by substituting

r=1, ?a; - a—ay. -a% - a—ax. and omitting the coriolis and centrifugal terms.

@ is volume fraction, p is density, P pressure, u and v are velocity
components, [ denotes viscous and frictional terms and g is gravitational
acceleration.

¢ 1is interphase drag function.

#Denotes that constitutive relationships are required for closure.
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Computed results for the Gardner and Nelles conditions are shown in
Figure 9 in the form of bar graphs depicting radial air volume fraction
profiles at various axial stationms. Initially in the elbow, the centri-
fugal force drives the heavier water toward the outer radius and the air
inward. Eventually, however, the gravity term dominates and the fluids
return to the opposite walls. This switchover makes the simulation numer-
ically difficult, particularly as zero or unit local volume fractions are
generated at various points in the profiles. However, continuity is main-
tained throughout. Quantitative experimental comparisons are given in
reference 15.

The TOFFEA code has also been applied to the Tapucu experiments. The
final example shows computed distributions of water mass flux, air mass
flux and volume profile. Note that the observed switch from co-current to
counter—current cross flow is also computed by the two-fluid model.

8.0 CONSTITUTIVE RELATIONSHIPS

Although the calculation procedures have been reviewed and applica-
tions illustrated, the next most important ingredients in a thermalhydrau-
lic code are the constitutive relationships required for closure. These
are the models of the sub—processes which supply the algebraic relation-
ships necessary for closure, in other words, to balance the number of
definitive equations with the number of variables.

In single~phase flow, detailed expressions are required for friction
and heat transfer and elements of the turbulence model. In two-phase flow,
depending on the model, correlations are needed for void fractionm, relative
velocity, heat transfer and friction between hardware and each phase and
between phases, and the question of flow regime affects all these.

Once a numerical scheme has been developed and exhibited convergence
and consistence, the choice of the constitutive relationships determines
the detailed results. These must obviously be chosen judiciously. A
fairly satisfactory repertoire of relationships has been developed for the
homogeneous model. Some doubt exists about the correct choice for the
advanced models and further research is continuing.

9.0 VALIDATION

Validation of code predictions against experimental evidence 1is
essential to establish credibility. In order to illustrate that validation
is a priority, the figures have been chosento illustrate comparisons with
data wherever possible.
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10.0 OTHER SOURCES

Multidimensional modelling of single~ and homogeneous two-phase flows
is quite widespread. However, there are very few reported efforts in the
advanced two-phase models. The PHOENICS code of Spaldingl7) should be men-
tioned, as should the Los Alamos TRAC18), However, most of the published
uses of TRAC appear to be rggtricted to 1D. The work at Jaycor on steam
separationlg), and COBRA-TF ) both incorporate two—-fluid models, the
latter also allowing for an entrained substance.

11.0 CONCLUSLION

Computational frameworks suitable for multidimensional analyses of

both single— and two—phase flow have been reviewed. It 1is apparent that a
common approach is the basis for all cases. It is intended to direct
future work in this area towards developing a uniform framework for multi-
dimensional analysis which will be applicable to all the models reviewed.
The equations and hence the solution scheme can be written to reduce from
the full two-fluid model, successively through the advanced drift model,
the basic drift flux model, homogeneous model and hence single-phase flow.
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