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ABSTRACT

Simple finite-difference methods are introduced for solution of
the one-dimensional flow-boiling equations. Upwind difference methods are

described, and the topic of numerical diffusion is discussed. Explicit and
implicit integration methods are presented.

6.1 Introduction

Computer codes such as FIREBIRD, SOPHT and RAMA are used to study
the transient behaviour of nuclear reactor transport systems. These codes
consist of mathematical models for flow in pipes, through pumps, headers,
steam generator, valves, and so on, which have heen written in an algebraic
form suitable for digital computation. In this session we will concentrate
on models for flow in pipes, and we will look at various ways of construct-
ing the algebraic equations using finite difference approximations.

Finite difference approximations are based on use of Taylor’s
series:

3£ (x) ax® 2%8(x)
fx+ax) = £f(x) + Ax e 5 ax2 + o+ 6.1

with first order approximations to the derivative 3f/3x being given, for-
wards and backwards, respectively, by

af(x) ” fx+ax) - £{x) af(x) ” f(x) - f£(x-ax)

ax + Ax x - Ax 6.2

-e

Another definition clearly comes from averaging equations (6.2)

af(x) ” f(x+ax) - £(x-Ax) _
ax 2Ax 6.3

A common approximation for the second derivative in equation (6.1) is
obtained by using (6.3):

32f(x) . f(x+ax) - 2f(x) + f(x-ax)
<. 5 .

6.4
3x2 Ax
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With these definitions in mind we will proceed %to look at the
conservative laws for one-dimensional boiling flow. These laws may be
written conveniently using the simple expression

] - 3 - -
77 V(x,t) o+ 7 9(xt) = b(x,¢) 6.5

Here ¥ is_a vector of the conserved quantities (e.g. mass, momentum and
energy), @ is'a vector of their fluxes and b, a vector of source terms
(e.g. friction and heat). The reader is referred to reference [1] by
Hancox and McDonald for further explanation, and, in fact, for a more
in-depth analysis of the whole business of one-dimensional flow-boiling
methodology.

6.2 A Simple Beginning

The conservation equations (6.5) are in partial differential
equation form. An integral form is readily obtained by integrating
equation (6.5) from point x-Ax to point x+Ax along the duct:

X+Ax xX+Ax

ﬁ f $(x,t)dx = 8(x-Ax,t) - 8(x+Ax,t) + f b(x, t)dx 6.6

x-Ax x-AX

This expression is perhaps more common as a statement of conservation: the

rate of accumulation of a conserved quantity is given by the net influx to
the control volunme.

Applying the approximation:

X+AX "
J/n fx)dx = 2axf(x) 6.7
x-~-AX

to the integrals in (6.6) we obtain

d 6(x-ax,t) - 8(x+Ax,t)

a‘%‘ ‘p(x’t) = 2Ax + b(x’t) . 6.8

Note in passing that the first term on the right could have been obtained
directly by applying (6.3) to (6.5): the same algebraic equations can
result from processing either form of the conservation laws. Equation
(6.8) is an ordinary differential equation in time and could be integrated
by any one of a number of existing packages for that purpose. The
technique involves dividing the duct into N-1 equally spaced segments,
yielding N points x,
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8, ,- 8
d - i-1 i+1 = ;
it ¥ 2hx * oy =N 6.9
and performing the integrations in parallel.

6.3 A Closer Look

While the simple algorithm (6.9) could be applied directly, it is
not very efficient. A closer look at the squations and _their nature will
help in designing better methods. We note that both ¢ and 6 wvarlables
appear, and it is often deslrable to reduce the set to a common variable U.
This is accomplished by applying chain-rule differentiamtion to (6.5):

3 | 3U(x,t) 38 | a0(x,t)  _

—_— — — ——— = b(x,t) 6.10

a0 3t )i x

The coefficient matrices are called Jacobians and the system at (6.10),
often called a primitive system, is usually written as :

-1

4] 3 5 s [A] W 38 3
— + A} — = ¢ ; [A] = |— —!| 3¢ =]— b 6.11
3t 3x il 0] a0

We note that the equation of state for the fluid gets into the picture, and
that U could be any appropriate set of variables, including v or 8, for
example. If the eigenvalues, or characteristic velocities of the system
are real, it is convenient to write the characteristic form

a0 al
- ~1 - -
(8] 5p+ (A1 (Bl 5z =35 (Al = (8] [a) [8], @~ (8] 3. 6.12
The matrix EA} is a diagonal matrix containing the eigenvalues and the

columns of [B| ' are the eigenvectors of [A]. For homogeneous flow, the

eigenvalues are u, the fluid velocity and u * a, where a is the local fluid
sound speed.

Now, we are going to apply the one-sided spatial difference
operators, equation (6.2) in a special way to (6.12). Consider two
diagonal matrices [L] and [R] with the only constraint being [L] + [R] =
[I], the unit matrix (i.e. 1, + . = 1, i = 1,2,3 for the homogeneous
model). We will identify the forward (or positive x) operator [R] with
forward differencing

, cXij )i B
(r] [B] 4 + (R} (A} (B) 44 =1I[Rr]A 6.13
and [L] with backward differencing:
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l

i
+ (L) [A) [B] - = (214 6.14

(v] (8] ;

2 4

Now, adding (6.13) and (6.14), we get

i

(5] g7+ (2] 4] (8 5z » (1) [a) [8] oo = 3 6.15

Expansion using (6.2) produces, at point x,

U,

(8] 3t + 5 [0-x] (8] [8] 0, = o S {00) () (3 0, - (] (1080 0, )

[N

6.16
(Note that i subscripts are implied for all matrices).

Bquation (6.16) may be integrated analytically assuming constant
coefficients and a constant source term:

At
w A 0y

[8] U, (t+at) = {e ) [B]{ﬁi(t) - ﬁi(w)} + 8] O(=) 617

An expression for ﬁi(w) can be obtained from (6.16) by setting the time
derivative to zero.

Equation (6.17) deserves special consideration. The exponential

matrix is diagonal, and in fact, for the homogeneous case, can be written
as

At 1
oy (11-r1) (u+a) ,
e 0 [o]
At
- ()
[o] 0
At

. . v (13_-1'3) (u-a)

| ‘ §
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For the particle velocity, as an example, we can say that exponential decay
will occur if .

(12-r2) u>> o 6.18
and exponential growth will occur if

(12-r2) u<o 6.19
Equation (6.18) describes a system which is inherently stable, whereas
equation (6.19) defines a system which is inherently unstable. Since the
velocity u is a function of the solution, and could be either positive or
negative, clearly the sign of 12-r2 must change with a change in sign of
the velocity to preserve inherent stability. Recalling the definition of
[L] and [R], this implies that backwards differencing (-x direction) must
dominate when the velocity is positive, and forward differencing (+x
direction) when the velocity is negative. This is the idea of upwind
differencing: difference in the direction from which the information
comes. The same argument quite clearly applies for the other terms in the
exponential matrix as well. In any scheme, some upwind differencing is
necessary to preserve inherent stability. Note that when central differ-
encing is used (i.e. [L] = [R], or the definition at equation (6.3)) a fine
line between inherent stability and inherent instability is prescribed, and
often can lead to computing difficulties.

Another interesting observation can be made by replacing the
directional derivatives in (6.15) by the averaged spatial difference,

equation (6.3), and employing (6.4): the system actually solved by (6.15)
is

al al Ax i
[B] T [a] [B] 3w o [r-L] [a] [B] — = i . 6.20
ax

The presence of the second derivative, caused by upwind differencing,
indicates that a diffusion equation is the one actually solved. This
diffusion can be controlled by reducing Ax but is none the less present.
Dynamic grid spacing is discussed in the references.

The characteristic form has been used as an example because it
illustrates quite clearly the presence of diffusion, and as well its
effect. Experience has shown that for practical applications, all methods
will contain some upwind differencing, directly, as described here, or
implied (e.g. donor cell methods), and, therefore, will suffer diffusion.

6.4 Time Integration

Nothing yet has been said about performing the time integration of
the ordinary differential equations, except that some existing packages
could be used. Here we will consider some particular, simple approaches,
and we will use the characteristic form as the example.
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Returning to equation (6.16), we will specify the characteristic
finite difference scheme, wherein the [L] and [R] matrlces are specified by

1. =1 if X, > o and 1l = o if x < 0. Defining ,A, ag the diagonal matrix
ot the absoiute values of the characterlstlcs, equation (6.16) becomes.

(B g+ - g I a1y + 2 ) G G - ) ) ()

6.21

and the analytical solutioﬁ, aasuming constant coefficienta and source
term, may be written as

At
- —— Ip! at, (t)
[B] ﬁi(t+At) = [B] U, (t) + &x {[1] e M '}}A:" (8] —7;§ 6.22

This is obtained similarly to (6.17), but employing (6.21) (which vanishes
at t==) to produce the substitution

av, (¢) ) _
(3] p— =4z Ial (3] {0,(®) - 7, ()},

We now consider approximations to the exponential matrix. First
of all, the simplest approximation is

A%
- ix }Al At
[I]— e = -—A—x }A} 6.23
which produces the form
_ _ a7, (¢)
[B] Ui(t+At) = [B] Ui(t) + At [B] — 6.24

This can be identified as forward Euler integration and is often referred
to as explicit integration, as each U. at the new time can be calculated
directly from old time information. :Warious numerical stability studies

can be performed for explicit methods, and the general result is that for
stability

At
Ax =A=.i [I] 6.25
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which implies a maximum timestep:

Ax
A | » L]
t f- max ,xi{ 6.26
One can make the observation that while explicit schemes are simple, they
suffer from inefficiency due to the timeatep restriction. This restriction
is referred to as the CFL (Courant, Friedrichs, Levy) limit. (One may

observe that evaluating the exponentials in (6.22) directly overcomes
this).

Another simple approach is derived by writing equation (6.22)
backwards in time.

At
To— 14l al, (+)
(8] 8, (e-at) = [8) u(w) + ax{l2) -0 2% Lot~ (m] -4, 6.21

Applying the same approximation as before we get

= - av, (t)
(8] 0, (t-a¢) = [B] T, (¢) - 2t [B] —5—

6.28
This algorithm is used to determine the solution at time t given the
solution at time t-At. , One may observe that the time derivative at each
point x. needs to be evaluated at time t, and from (6.21) is seen to
involve linear combinations of the solution values at point x, as well as
its neighbours. The method is thus said %o be implicit, and a set of
gimultaneous equations needs to be solved at each step. We note as well
that the coefficient matrices and source terms are required at the new
time, time t. A simple approach is to assume the values they had at the
old time, t-At. This is called a one-step implicit, or semi-implicit form.
Alternatively, one can iterate, at each iteration updating the coefficient
matrices and source terms to time t. It is clear that implicit methods
require more work per time step than do explicit methods. However, they
are (from linear analysis) usually unconditionally stable, with no timestep
restriction. Timestep is thus determined strictly from accuracy consider-

ations, and the net result is usually a large reduction in overall
computing costa.

6.5 Conclusion

In this session various simple numerical methods for solution of
the flow-boiling equations have been introduced. The main points are that
some upwind differencing is necessary to ensure essential stability of the
basic system, at the expense of diffusion, and that implicit time-
integration methods, although more work per timestep are preferable to
explicit methods because they are not timestep restricted. Several other
interesting topics are covered in references [1] and [2].
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