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SINGLE AND TWO-PHASE FLOW MODELLING I
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ABSTRACT

The derivation of the cross section averaged form of the mass,
momentum, and energy equations in terms of time-averaged variables is presen-
ted. The analysis is based on the fact that the variables may fluctuate as
turbulent quantities, and it is shown that the techniques of turbulent flows
can be applied to two-phase flows. The one-dimensional single phase turbulent
flow conservation equations, and the homogeneous two-phase flow equations can
then be obtained by simplification. The homogeneous equilibrium flow model is
developed with particular consideration given to the momentum equation and
pressure drop.

5.1. INTRODUCTION

The derivation of the conservation equations for one-dimensional
two-phase flows is given in detail in the appendix. The following is a brief
development of these equations with the emphasis given to the concepts of the
control volume (integral) formulation, time averaging of fluctuating (turbu-
lent) variables, and cross-section-area averaging.

5.2. THE GENERAL CONSERVATION EQUATION FOR A CONTROL VOLUME

. | %-:%/[[x}odl/-f xooV-a’ﬂ) | (1)

Rate of Generation = Rate of Increase + Net Efflux Integrated
in Control vVolume over Control Surface

5.2.1 Conservation of Mass (Continuity Equation)

X £ total mass M of system

r' = a’ s the volumetric generation of component 1
m —

¢

ﬁﬁd\x'dﬂ +.a_a%[//ﬁcw/l/: //ﬁm a’V_ (2)

For turbulent flows, the fluctuating gquantities are:
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Figure 1 is a sketch showing turbulent fluctuations in velocity

and void fraction (.

The time-averaging operator is defined as

4

(")E——’t-,-/()a’z‘ @
AT o .
Hence by definition —_— “"'I’E
v =0 _ V' #o
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4 Fluctuation
, V = Mean l/e/oc/'/y
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Substituting the fluctuating quantities (3) into egn (2), expanding
and time averaging yields

;7 -dA + 2 [[[A%aV = f//r,, av
,o 127/ (5)
éa‘t//ﬁ?alv-ﬁ(ﬂ“ XY Y p o p Y ) d P

In Figure 2, a control volume bounded by the channel walls is chosen
such that the wall shear stress can be employed and velocity terms other than
in the principle flow direction vanish. Employing this control volume allows
eqn (5) to be re-written as

o X V,z dAdz - » " y AZ -+ o X dAd: Z. dhAz
2 [/ £ | 1z [/ £ 4 /f
(6)
%' dAdz - 2 :ﬂ(/V, /'*RF/IVI, * I /o/’“I'f/o,/“I”a,)a/ﬂﬂli’
A/O,d z _zf/'(/’ 4 e ¥ %

We define the cross-section-average operator

<c )2 E;’L//n( ) dA (7)

Applying this operator to egn (6), and lumping the fluctuating terms on the
R.H.S. into an effective component 1 mass generation function < T)m > for a
constant cross-section area A, and no mass flux through the wall yields

O KFad> +9Q <pIVe> = <7 (8)
> A < L& T 7

Similarly the continuity eqgqn for component 2 becomes

QKRG + Q<A OVie> = =< T3> = < 7, > (9)
o€
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5.3. CONSERVATION OF MOMENTUM

In a similar manner, the momentum equations for the two phases are

O KpxV> 1 2 LpRVF> = <Thy> (10)

ot o

ﬁ <P OmR) Vo7 +ai(/az- (1-) 71:7 = <72 (11)
Z

The momentum equation can be written for the two-phase mixture as

O GV s g P +  <FR Vg + B (-3 Vg >
¢ oz (12)

——m——

= {~éif,1g o Pu ¥ 9 <<j57 603-6:f
. z A )

where

?:u = wall shear stress.

(/'5'>=(o7/5; + (1-) B, >

FIGURE 2
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.4. CONSERVATION OF ENERGY

The energy equations for the two components are

(ﬁo’((t?,+y,_z'_&’4gg)>+%<j&\7,,(z, v i +9y)> = <7:¢,(13)

r) (&(/-«)(c{, Wiy * 9</o G-y a (G + V, U/-ij)? <T,

(14)

The energy equation for the mixture is

<P ) (z-odt,? +ac) <p W;‘ + A ("‘7‘)23‘:)
&f (15)
= i”.Pl, s o
A AdzZ
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ONE-DIMENSIONAL STEADY HOMOGENEOUS EQUILIBRIUM FLOW

For one~-dimensional steady state flows the a terms vanish in the

conservation equations. :;?

The Homogeneous Eguilibrium Model (HEM) assumes a mean density for
the two-phase mixture, no slip between the phases, and thermodynamic equili-
This is also the EVET model (Equal Velocity, Equal Temperature). That

brium.
is - _ -
Sp2 =<K g +(1-%) p,> (16)
<V> = < Va? = & Vyz? (17)
Ké>= <G> =L | (18)
5.561 HEM Continuity Equation
Hence the continuity eqn for the mixture from eqn (8) and (9)
becomes
8 L pVY> =o (19)
52~
or f[% </3‘7>] df = constant
w = A 7; = constant (20)
5.5.2 HEM Momentum Equation
From egn (12)
a <P727 :—[._@_’;*?"‘,Pw+3<-}<‘039]
EE. oF A 4
Q2 (wvV+AP)= - CaPuw— RP g coso
o
WV = -RdP -2, 2 -Apq cos & (21)
7z oz ~"rrT
5.53 HEM Energy Equation
From egn (15)
9 pVei> = ilﬁ, r dw (22)
oz Aoz

A
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or
AVe d ¢) = 2‘”;7, + o w
a2 o &
w d fa+_tzt+3y) = @ + dw (23)
o z oz o=
5.5.4 Further Development and Use of the Momentum Equation

The momentum eqn (21) is often written in terms of the pressure
gradient, and its frictional, accelerational, and gravitational components

if:—f?w—_ﬂO/V -/o'gco_v-o-
az A A oz
“(28) - (22) (%) (20
az/r adZ g ade)] 6
5.5¢4.1 Frictional Pressure Drop

Expressing the wall shear stress in terms of a two-phase friction
factor ftp

Co = Fp /3_222 (25)

c.o-(dPY = P £ Fv* = 24,FV° (26)
= ¢ P2 tp
JE)F A s 2 D

or in terms of the mass flux G, specific volumes and mixture quality X

] 2
- _q’_)_’) = 2%, 6 (o +x2y) (27)

J
dz/rF >
5.5.442 Accelerational Pressure Drop
"(9_'_’3 = W dV = 6} W (28)
az /A A dz 2\ Ap
2 2
-—(a'P) - 6°d __L) -(6 oA (29)
Az /A dz\ £ apg ! oz
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Since

d /1) - o g’_z +7ca/zr + (1-2) dv; (30)
0/3(’5) s a’-z 7{

and in the two-phase region vg¢ and vg are functions only of pressure.
Hence

OREY SFIEE AT

and the acceleration pressure drop becomes

_(_gf - /jdx+dp[x_g’_q,0-x)dv] (ogt X7 _La_’_ﬂ] (32)
2/A JA Az

dz dz| gy
5.5.4.3 Gravitational Pressure Drop
_g’_/_") T pgcose = _g cos e (33)
C'bﬁ'f-if'bag)
5.5.4.4 Total Pressure Drop

Substituting eqns. (27), (32), (33) into egqn (24) and re-arranging
yields an expression for the total pressure drop.

— Q/P = Zﬁ (?fffx )*622342' -6 (?J'#x .,',).Lg_‘” + 9 cos &
-0_/—3) 'D < (U;':-fzp_',-)

/ +6[za’v3 ,,_(,-x)a?’v_;:_]
o

(34)
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5.6 TWO-PHASE FRICTION FACTOR

The only empirical factor in eqn (34) is the two-phase friction
factor. However, a two-phase multiplier ¢,, can be defined such that

s’g ( ){o ¢f, (35)

where the subscript fo indicates the pressure drop evaluated for the case
where the total flow is considered to flow as the liquid phase.

i.e- T z
(%), =2 S % o (36)
oz /F D ?
It can be shown that for laminar flow, where f = 6% .4 A , and
fevp = ¥4 A that DW
Pw

6 = g = L1225

(37)

P e [ 1+ X ( /)J
and for turbulent flows where f = ftpv that
d: - e xf Py
4o - (38)

Vs

or for smooth pipes where f = 0.316 Rf-1/4, ftp = 0.316 Rtp‘1/4,

that
-
¢’; =[/+x *“f-/)] [/-fx laf-)] (39)
6

5.7 SUMMARY

The derivation of the cross section averaged form of the mass,
energy, and momentum conservation equations in terms of time-averaged
variables is presented. The analysis is based on the fact that the variables
may fluctuate as turbulent quantities and it is intended to show that the

techniques of turbulent flows in general can be applied to two-phase flows.
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APPENDIX

1. INTRODUCTION

A single phase flow can be well approximated by a continuum flow.
That is, properties such as density, viscosity, velocity, pressure etc., are
assumed to vary continuously throughout the fluid. Any discontinuities exist
only in the size range of the mean free path of the molecules, which is
usually negligible with respect to the size of the flow system.

A two-phase flow may be broadly defined as a flow of two phases
(i.e. solid, liquid, or gas) or a flow of two components (i.e. different
chemical species) which is piece-wise continuous. That is, the properties
such as density, viscosity, velocity etc., are discontinuous step functions
over a size range not negligible with respect to the dimensions of the flow
system,

Examples of two-phase flows in nature include rain, fog, smog, snow,
quicksands, and even the flow of blood. There are many technological
examples; among the most important presently being multiphase flows in
chemical engineering, and the flow boiling process which occurs in some
nuclear power reactors.

Two-phase flows albeit more complicated obey all the basic laws of
fluid mechanics. It is intended to show in the following derivation of the
conservation equations, that many of the basic techniques of turbulent flows'
in general can be applied to two-phase flows.,

2. THE CONSERVATION OF MASS

2.1 The Integral Formulation

The equation for the conservation of mass in single phase flows is
given in differential form by

,igi; + Vv '/9 Y = o (2.1)

For turbulent flows, the fluctuating quantities
- '
p=FtP
]
vV =V+V

are substituted into the above continuity equation and then time averaged to
give

jéje + V- ()5 67‘+‘f;7;;7) = o (2.2)
ot
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For two-phase flows, however, the differential formulation is not
convenient, since it would require complex boundary conditions at the boun-
daries of each phase region. Thus we adopt an integral formulation in the
direction in which the diffusion of mass, momentum, and energy are signifi-
cant. Therefore, for internal flows the integral formulation in the direction
normal to the main flow direction is used. More formally, the cross-section-
averaged formulation is used.

The integral formulation is as exact mathematically as the differ-
ential formulation. What it does is to reduce the requirement of exact inter-
phase transfer relationships, and since the formulation is integral, these
relations need only on the average be correct.

2.2 The Control vVolume Approach

For the control volume shown in figure 1, let S, be the boundary of
a system of particles at time ¥#. After a time interval A¥, the system has
moved to the location bounded by S; . Let X . be the total mass, momentum, or
energy in the system at time ¥. The volume bounded by §,, is v, + Vz » that

Sk
Fig. 1 Fig. 2
e X{ < XV‘{ -f szf
Xt’fA'L‘ X’ﬁf-m{ 4 xvaé,éf
The change in X of the system during A?¥ is
X - X, = X -X, +X -
Z1a¢ ¢ Y2 ¢sav 2 ¢ Y2 ¢ 4 a< Y, ¢
aAX A ~

At a¥
As Af=>o , ¥, >V,

The first term on the right side becomes the rate of change of X
within the control volume.
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The second term is the net rate of efflux (the difference between
the rate at which J{ leaves the control volume and that at which it enters).
Let X equal the value of X per unit mass. 1In figure 2, dA is an elemental
area on the surface of the control volume, so that the net rate of efflux of

X across g/A is given by x(JoV. q’ﬂ) .
Egqn (2.3) can be written as

dx. aX | #x(/ou’oo/ﬂ)

at ot
Rate of Rate of Increase Net Efflux Integrated
Generation in the C.V. Over the C.S.
or
ax - 3//x/oa/y +%z(/ov.a/ﬁ) (20
o€ ot .
Eqn. (2.4) is the general conservation equation for a control
volume.
2.3 The Continuity Equation (for Component 1)
From egqn (2.4) the mass conservation equation for component 1
becomes

f AV an 4 ;%/fﬁa’v = ///ﬁ’”,d‘/-u.m -

Net Rate of Efflux Rate of Increase of Mass Generation
From C.V. Stored Mass in C.V. in C.V.

where we define

j? = instantaneous density of component 1

V) velocity of component 1 (a vector)

d# = area vector of magnitude @/4 and direction normal and outwards
from c/ﬂ

= time

element of volume

volumetric rate of creation of component 1, or the component 1

mass generation function

[
dv

Im

[l

it

2.3.a void Fraction

We define a point function & such that &«#/ when component 1
occupies the point and &=ro¢ when component 1 is absent at the point. Thus

~/

)o, = f, & where f' is the continuous density of component 1
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Thus by definition

T;_[[ x dV =_¥L (2.6)

That is, the instantaneous average of X over the volume represents

the fraction of the volume occupied by component 1. Component 1 is the
lighter component (steam in a steam-water flow, air in an air-water flow) and
the space average value of « is called the instantaneous void fraction or the

vapour volume fraction.

2.3.b Time Averaging

As in turbulent single phase flows, two-phase flows exhibit fluctua~
tions, and thus instantaneous values alone are of little use because they tell
us nothing about the magnitude of the fluctuations.

Thus the time-averaging operator is defined by

¢ )
(2.7)

L ( ) dt
At Jpyd

As for time averaging in turbulent flows, it must be noted that AT
is a finite time interval. It must be large compared to the time scale 7; "of
the fluctuations and on the other hand be small compared with the period 7
of any slow variations in the flow field that we do not wish to regard as
belonging to the fluctuations.

Flows in which the characteristic time scale 72 of the gross
changes is very much larger than the characteristic time scale 7, of the
detailed fluctuations in the various quantities, may be termed slow
transients.

2.3.cC Derivation '
N S ALL +£_[//,§°a/v=///7i, 2%

(2.5)

-~

v

}?/’/O‘M d A +é%////o,o(a/l/ =f//' 7, oV (2.8)

Considering fluctuations of guantities

S &

~

—_— /

~ /
/ﬂv - f% *‘/% U4 s C;f v, y
X = & +&’ = Tan * Tom (2.9)
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Substituting eqns (2.9) into eqn (2.8)

g(ﬁf-ﬁ’)(o?m(’)(\f,fw’).a’/) +§///C€+ﬁ')(o?-f«’) O/V--'///iff’;:)a’l/

Expanding the above equation and applying the time-averaging operator

§ (pav,+ BLTARZV A p Y, + IV + E«V 3 g2+ gV )- o/ A

n
\\_\
=

~

s\Ml
<

Nk

&

X

The resulting equation is

#ﬁ&\vl.c/ﬂ + aﬁt_‘-//

ve /g
-0 / T’ LV
— ‘fa of _
Y _
—ﬁ/ﬁdv*';/o”w’*Eﬂ?*ﬁld,/“{,)'dﬁ (2.10)
v

Note that the time averaging of the products of quantities follow
the general rules of turbulent flows.

The terms in eqn (2.10) are:

I The net rate of efflux from the C.V. of the average mass flow rate of
component 1 over a¥, by the average density, void, and velocity.

II The average rate of increase of stored mass of component 1 in the C.v.
due to the rates of increase of the average density and void fraction.

IITI The average component 1 mass generation in the C.V.

Iv The rate of increase of stored mass of component 1 in the C.V., due to
the rates of increase of the fluctuations in density and void.

v The net rate of efflux from the C.V. by the fluctuations in density,
void, and velocity.
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2.3.d The Control Volume

The choice of a suitable control volume is essential to yield a
tractable solution. We may choose a control volume the boundary of which may
or may not be fully made up of a fluid surface.

For an internal flow in a channel we can choose either a small
elemental volume within the channel, or we may select the channel inside
surface or walls as part of the control volume boundary. If we choose the
former control volume; the integrals across the control volume and control
surface will be impossible to solve since we know nothing about the boundary
condi tions such as the shear stress, and there will be net momentum transfer
across all of its surfaces. .

By choosing a control volume bounded by the channel wdlls we know
some thing about the boundary conditions. We may use a suitable wall shear
stress correlation and assume suitable distribution functions. Also by
choosing the fluid boundaries of the control volume normal to the pringipal a -
filow direction, the scalar product of the velocity vector V,r(lf,,‘fV,;)if ,Ji}{;)j*(ﬁ,"l{")k
with the elemental area vector of , causes the velocity terms in the X and y

directions to vanish., That is:
§ 72V-da =ﬁ/§o?(l7,'x¢*+7,,ffl7,?/?)-d/‘)i
.k :J'nk S0

kK k=9
#ﬁ&\\?.c/ﬂ = (f3 V) dA

-3
» * )
.

'S

There is also no net change of momentum through the control volume
in the direction normal to the principal flow direction (e.g. radially)
because of the solid wall boundaries. Thus the net change in momentum occurs
in the principal flow direction only. That is:

2 7:<u‘xja/v.-§_// 52V, oV
af///f sl 7T
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Considering a control volume as shown in figure 3, representing say,
a section of pipe.

”"II
Y N
II
ﬁ"(v’i ‘\
\

o?
(é Figure 3

q’  kdzd VA, dV= ddAdz

constant cross-section area through do'#

portion of the perimeter through which component 1 is
transferred

rate of mass per unit area of component 1 transferred through
the side of the control volume

P/

where

i n

sTib

Y.
"

Now in egn. (2.10) term I becames

%ﬁa&j.dns[/p by AR »«/[ﬁ [/}a‘cf’,})a’zdﬂ]-/; fo R Ve dA
~m" B oz
= ;a_[/’ P& Vg dAAE ~m"F,, de
2 /ia

Term II becomes

Term III becomes

///i/y:/[&eia/ﬂde . /ﬁfia’ﬁa’;‘
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Term IV becomes

—0}%/]//077;7&/)/ = ";2/” /0:—’;7 o/hclz

Term V becomes

(f,o(\V rRpY + T Bt v')-d A

[/] (,o,d Vg += L’ Vz;"l/;fd'qﬂ-/:,’-(t/,?)a/ﬁ
* // O (BaVg +& BV +Ug A% + L) olh ol

...//4(/‘} Vi +2 P 0 Vod' ¢ g B4+ A ""VIZ,)OM}
= =3 ([, (AR + 7 FUE + T AT ) lacle
5

and thus egqn. (2.10) becomes

2 [[ A% Ve clbcte - r'Fndl +;_o;/£,;.7 dadlz =[£7;,,, o Aol

-a_% /A L Andz

A f/ (G« + 2L + 0z A& +p« Yy )Rl
2 Jlh

(2.11)

We define the cross-section-average operator

<c¢ )75#5( )é’ﬂ

and applying <C)pto egn. (2.11)

£ O [A<Zavz>] e ~ m Byl +aae [a<za>lds = A<T,>dz
<

[Aacg=>] da

-2
¢
-2 [ {<f l>e <R AE> +<0a S 7 + <A e 2o Vg >} [ oz

(2.12)
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Dividing egn. (2.12) by dz gives ' —

[ﬂ<;),x>] + & [,7(;‘,(”;,)] m'P By = ”<;Tfm7

dé
-2 [a<cp=>]
¢
;Q A [ NE> #<R A > 4 < g pu 448 nif ] (2:13)
2.3.e Simplifications

The right hand side of eqn. (2.13) contains the fluctuating terms
which are difficult to evaluate. Thus we lump these parameters in an effec-
tive component 1 mass generation function defined as

<Tim>2 <7Tn7-4 9 [A<A™>]

52 [#(<F <V >#<R P> + <2 572+ < gV’ 5] ]

and eqn. (2.13) may be written as o~
2 [A </o,o<>]+ [ﬂ(ﬁ,-??,',>j- P, T ALT, > (2.14)
oF
When the cross-section area A is constant and there is no mass flux
through the wall (i.e. m“=6 ) eqn. (2.14) becomes
2 <ga> +r2 <p = <7,,>
¢ o2 :
2.4 The Continuity Equation (Component 2)
Since & is defined as the volume of that portion of V which is
occupied by component 1
_L.///o( ay = V.
4 v
thus the portion of V occupied by component 2 is (/-o¢)
. _1_// (r1-et)dV = V4
4 vV '
5-18 .
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Thus the mass conservation equation of component 2 is similar to egn. (2.8)

ﬁﬁ(/-«)\% -dA + 9//ﬂ6—d) AV = // i OV | (2.16)

Considering fluctuations of quantities

s Ath
%—V*%~, 1
?’ + zm (2.17)

(/-o() e (1-R)% Cr-?)

Substituting eqns. (2.17) and time-averaging yields;

ﬁ(/a; (1-2)V, -dA +5’¥/'//,o:(,-a)a/yrfj'7?,, oV

- 3 ///,0'//- «") 'V

- #[/ /’"")Vz +-R) AT+, () + 2 C-a) W ) )

Using the same control volume as previously, and 1ncorporat1ng a
term m, }5M which represents the mass transfer of component 2 through the
edge of the control volume, we obtain

a% [A ) G ke~ B oz + 3 [ (-0 lt < [ 72 ottete

" % 4 py'O-) o Adle
(2.19)

..._Q_///};(/*d‘)l{; fﬁ*&)&’yz;*‘z‘f [’.“,)fal*/g’//-‘c{/);éa’]a/ﬁa/_?
o oz HA

Applying the cross-section-average operator < >

[#<AC-2G>T - B + & [4<F025T = 2<7,>

-2 Lacpitran>]
o¢
— 2-20)
- ;«2 A {(ﬁz () V3 >+ SCRVR 3 > + <7 () gl 7 + <A G Vig>] ]
E
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Defining an effective component 2 mass generation function as
—— : T —————
STom? <>t 2 [ALA Cra)>]
A
(2.21)

—;;L ;% [ﬂ A GoIWd > + <)L, K >0 < iy (- IB'> + < g o) >} ]

we obtain

a_% [4<p -a>>] +£ [a<h ) Ve >]=m8,, < ALF,> (2,22

When the cross-section area A is constant and there is no mass flux
through the wall (,;',J”ao ), edn. (2.22) becames

(2.23)

a—% <p (&> +£ <P -3) ’2e> < <?3m>
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3. THE CONSERVATION OF MOMENTUM

For an inertial reference, Newton's Second Law of Motion as applied
to a fixed mass M is given by

SF-m dv EFes dP
9¢ At % at

where [P is the linear momentum of the system, and the sum of the forces S
includes body forces and surface tractions. In eqn. (2.4) letting X =/P and
Xz /PsV , the momentum equation for a control volume may be written for com-
ponent 1 as

#V,fﬁvwdﬂ) +__//\Vfa oAV = a’/P | (3.1)

"'/3/"/’/“ ZF'.g‘E‘ %‘z‘f

)

g\yl (ﬁ“\yl-a’ﬂ) +9 // V, £ dV = 1 g’f - S F (3.2)
9e ot 9c 9. A€

Cad
Defining a component 1 momentum generation term ’;' as

f/ 71':,,, adv = L dF (3.3)
e ot

7 Q,«:'M) *a‘%// vc;:“ oV =///7:";‘“V (3.4

Considering fluctuations of quantities

°( & *x

\y E’;-f\)’,’ (3.5)
~ =" o~ !

T;M TZ,.*UM

Substituting eqns. (3.5) into eqn. (3.4)

g(;y.;y)[(ﬁfﬁ)(x#d)(v* ).h f/(»’f )(/Dflﬂ VWZr+t’) SV
Je
9.

= o~ (3.6)
=/[/(77~ *Tim AV
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Thus the momentum conservation equation for component 1 is given as
(when 3° incorporated correctly)

O LAcgc il + 2 [acpaZi>] = 4¢ 7> (3.7)
o€ P
Similarly, the momentum equation for component 2 becomes
- - - - - - -
?a'i‘ [A<h G-2),>] +2 (a<f 23y >] =« A<T> (3.8)
When tﬁe cross-sectional area is constant, egns. (3.7) and (3.8)
become ' ‘

gég KB IV,> +ZQ_£ KZaVE> = <7> (3.9)
- - - _ =2 —
;’-_3_ LB G-a) Vo ” +‘§%‘( -2 Vg > = LT, > (3.10)
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4. THE ENERGY CONSERVATION EQUATION

The First Law of Thermodynamics for a system consisting of a fixed
mass of particles is given by

dE = 07‘(.7~6/N

where & = heat crossing system boundaries

w = mechanical, electrical, magnetic, surface tension etc. types of
work done by the system
E = U+ kE+pE (internal + kinetic + potential) energy

Thus from eqn. (2.4) the energy equation for a control volume may bhe
written for component 1 as

ge(ﬁw.da) +¢§?E///eﬁdy =g{‘{

(4.1)

= d? - JW
A ¢ ot
where @ equals the total energy £ per unit mass
E = U +KE + PE
. 'e:q,+_,_( %) *3%
3" 9::.

where &, is the internal energy per unit mass of component 1.

Substituting, eqn. (4.1) becomes

95((«,4'(»’ >+sy)(f; a/ﬂ)-i-a///o(«fﬁg_@»‘i_)o/l/

249c¢c (4.2)

= d (Q-W)
of¢

It is convenient to divide the work W into the flow work necessary
to push the mass across the boundaries of the control volume; and all the
other work crossing the control surface. Consider a mass of component 1 AM of
volume AY which flows across the control surface. The work done by the system
to push the mass across the boundary against the pressure acting externally on
the boundary is PAY. Since the mass density of component 1 15}3 y . thus the
flow work done by the system per unit mass of component 1 is P .

P
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Eqn. (4.2) may now be written as

#(a,m s VY +9y) (B Y- dA) +d_9{_/]//ﬂj (a4, +V,-v, +g9)dy

2 9c 9e 29 9e (4.3)

= d s
-d{(Qw)

where now w includes all work except for flow work

Defining a component 1 energy generation function 7’ as

1y
///77“ odv 2 o (¢-w)
4 L3
and also since the thermodynamic property enthalpy c' - a,«.ﬁ_
£
7%" ORI RN TREL *9/[/0,«(«, v +_.‘)_.‘L)a/V // T AV
29c 9% 29, (4.4)
Considering fluctuations of quantities
L= );; te!
X e +a’ -
VI = VT + M’ (4.5)
* o v
¢ 2 ¢ f(
e a, + u,’
T;“ e r' +r'
Eqn. (4.4) becomes
7?(,5,*,0,')(57*&')(‘2"V')[(g;"‘;')* (Cev,)-(ry )+ 3y | oA
2 9 9e
'é/ (17 (Faa) | (o) + Gew’)-Ciew') + 397 ofv
ot 29 7e (4.6)

[[/(%; i B oty
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Applying the cross-section-average operator <, the cross-section-
average form of the energy equation for component 1 is obtained (incorporating
9e correctly) as

9 La<za (a,fv, v, +99)7] + 5’[ﬂ<ﬁ°ﬂd,(c, V+37)>]

(4.7)

&l

=A< T,>

Similarly, the energy equation for component 2 becomes

S [ARCAU-)(T +V, V. VoI + 8 [A<P C-Z) Vg (C.# VW, V, +94)>
éé[ AL A _;_Z_angy J az[ £ ze(; el ”)'(:lx.a)

=ALKT,
When the cross-sectional area is constant, eqns. (4.7) and (4.8)
becane

a&i <p (@ +v, w+57)> +_d (,O,«V,e(uv +7‘7)> <77,> (4.9
¢

2 <ApaG- o<)(zunyz ¥, +57)> +_é <g ()Y, (‘ . %*yy>> < (4.10)
¢
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5. THE FLUCTUATING TERMS IN THE CONSERVATION EQUATIONS - A
CONSIDERATION OF THE EFFECTIVE GENERATION FUNCTION

51 The Continuity Egquation

In egqn. (2.10) the fluctuating term IV

oy

has already been described as the rate of increase of stored mass of component
1 in the C.V. due to the rates of increase of the fluctuations in density and
voide. .

Also, term V in eqn. (2.10)

# (P, 'V, +2 g’y + ¥ pa’ + gy’ ) </ A

has been described as the net rate of efflux from the C.V. of the mass due to
the fluctuations in density, void, and velocity.

After applying the control volume and cross-section-averaging opera-
tion, the above terms were lumped into the effective component 1 mass genera-
tion function <7",m> defined as

Tm? = <Fr-2 2[4
A J¢

k2 [Af<h A2 <R p N5 5 <y AHTZ 1< g > ]
The term < 27 ’) could be considered a compressability term, the /3’
being fluctuations in the vapour density and o’ being fluctuations in the
void. It is obvious that fluctuations in either or both of these quantities
will change the rate of increase of the mass of component 1 locally (as
defined by the cross-section operator < > ).

Terms such as </5; “'V/;_;’?could be considered as mass flux terms.
Fluctuations in P, ,%, V,a and their correlations will change the local mass
flux.

It can be seen that it is not easy to determine what the physical
significance of each term is in the effective generation function. To gain
insight into the physical significance of the fluctuating terms, it is more
convenient to look at the terms in their general control volume format.
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6. SUMMARY
The cross section averaged form of the mass, energy, and momentum

conservation equations in terms of time-averaged variables are given below for
a differential length of channel of constant cross-sectional area.

61 Continuity Equation

vapour Phase

o%_ <> +£ <BRVa?> = <7,

Liquid Phase

‘.;_9%_ <AC-3> +3% CPC-3)Gy>w = <T)p7

where; <f§i"7 = vapour generation function
CT%,2= ~<7;,» for a systen without mass addition through the walls

6.2 Momentum Equation

To avoid a detailed description of interphase momentum and energy
exchange mechanisms, the momentum equation can be written for the two-phase
mixture as

j{ <7~\;/.3* A (-2) 23>*5> </°,°<V,z * p (1= R)l/ze>

- Z”SES 4 ?%;fa, + j~</?)»Cosue:}

where
?@ = wall shear stress
<p>: K XF+ C-R)p, >
6.3 Enerqy BEgquation

Similarly the energy equation for the mixture is

o </0ou + (/- “)/%‘27* a (ﬂ“wz‘t*f;(/ “)Vze‘z> i”’% . ol
o+ - Ada

when the enerqgy is represented by the enthalpy of the vapour and the liquid.
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