AECL EACL

RFSP Training Course (Course Agenda)

Benoit Arsenault, AECL
March 2000

- Introduction
 - ↑ Methods of Physics Analysis and Physics Computer Codes
 - ↑Three-tier Scheme for CANDU Reactor-Physics Calculations
 - **↑**Role of RFSP
 - **↑**General Capabilities of RFSP
- The RFSP Direct-Access File_
 - **↑***PRINT MASS
 - **↑***STORE
 - *USE DAF/*MAKE DAF vs *READ TAPE/*RITE TAPE

- RFSP Model
 - **↑**Neutron Diffusion Equation
 - **↑**Geometry
 - **↑**Lattice Properties
 - **↑**Reactivity Devices and Device Properties
 - **↑**Smearing of the Devices
 - **↑**Irradiation Distribution: 3 Models

- Time-Average Model
 - **↑**Irradiation Regions
 - **↑**Average vs. Spatially-Distributed Xenon Concentration
 - **↑**Perturbations
 - **↑**Flux Flattening
 - **↑**Time-Average Equivalence

- Direct-Acess File
- Define Material Properties
- Generate Lattice Properties
- Definition of a Complete CANDU6 Model
- Time-Average Model
- Time-Average Equivalence
- Simulation of a fresh Core (0 n/kb no depleted fuel)

- *CERBERUS
 - **↑**Spatial Kinetics
 - **↑IQS Method**
 - **↑**General Scheme of Solution
 - **↑**Examples
- *POWDERPUFS
 - **↑**Theory, Westcott Convention
 - **↑**Generation of Fuel Tables
 - **↑**Interaction with Other Modules

- *SIMULATE
 - **↑**Snapshots
 - **↑**Average vs. Spatially-Distributed Xenon Concentration
 - **↑**Grid-Based Local-Parameter Methodology
 - **↑**History-Based Local-Parameter Methodology
- *INTREP
 - **↑** Detector Dynamics
 - **↑**Lead Cables

- Transfer from a Snapshot to a History-Based Simulation
- Calculation of the Phinoms for spatial Control
- Bulk and spatial Control
- Cerberus (The Static Case)
- Cerberus (The Adjoint Solution)
- Cerberus (Dynamic Analysis)

- Flux and Power Mapping
 - **↑**Theory
 - **↑**Applications to Core Tracking
 - **↑**Auxiliary Calculation Modules
 - **↑**Failed Detectors
 - **↑**Examples

- Definition of the detectors in *INTREP
- Generation of the modes
- Generation of the Fundamental Mode
- Flux Mapping Using the Data from the Off-Line System
- Powermap

- *CERBRRS
 - **↑**General Scheme of Solution
 - **↑**Examples
- *INSTANTAN
 - **↑**Theory

- Cerbrrs (Static Case)
- Cerbrrs (The Adjoint Solution)
- Cerbrrs (Dynamic Analysis)
- Trip Time
- Simulation of a refuelling
- Flux Mapping of a Refuelling Simulation
- Generation of a Refuelling Map with *INSTANTAN

- Code Development
 - **↑**Lattice Calculations
 - **↑**2-Group Properties
 - **↑**History-Based Simulations
- 2-Group Modules
- Software Support

- Review of the Previous Workshops
- Answer Questions