Matrix Form of the
Equations

W ORDER TO FACILITATE the mathematical formaulation of
the methods that we will examine in this course, it is very
useful to express the space-time kinetics equations in matrix
form. This makes them look independent of any particular
energy group, and produces a much more compact notation. To do this

we have to introduce the following vectors and matrices:

A diagonal matrix of the velocities

b=
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¢ A column vector of the fluxes,
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» A square matrix of the cross-sections,
Eu_zsu—i _Esl(-—2 _zsl(—G -|
[2] = —252<-—l 212 - 2s2(—2 .- -_252<-—G (EQ19)
| ~2G et 262 o 267 25606

« A column vector of the prompt energy spectrum,
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e A column vector of v times the fission cross-section,
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« D cclumn vectors of the delayed neutron spectra,
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+ A diagonal matrix of the diffusion coefticients,
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With these definitions, it is very easy to re-write the space-time kinet-

ics equations of the preceding chaprer in a much more compact form,
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