

Nuclear Reactor Safety for Science Teachers: A Quick Overview

> Dr. V.G. Snell Director Safety & Licensing

30/06/1999 9:28

Nuclear Reactor Safety for Science Teachers - web.ppt Rev. 2 vgs

1



## Outline

- What is the Hazard?
- What is the Goal of Reactor Safety?
- Where is the Radioactivity?
- Stopping the Movement of Radioactivity
- Safety Functions:
  - Power Control
  - Decay Heat Removal
  - Containment of Radioactivity
  - Monitoring
- Severe Accidents
- Towards Safer Designs...

30/06/1999 9:28



#### What Accident is This?



28 killed, 36 injured, 1821 homes and 167 buildings destroyed

(It did NOT occur in a nuclear reactor but in a chemical plant in Flixborough, England)

30/06/1999 9:28



# **Nuclear Power is Dangerous**

# **Nuclear Power is Safe**

30/06/1999 9:28

Nuclear Reactor Safety for Science Teachers - web.ppt Rev. 2 vgs



| Dangerous                                                          | Safe                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiation can kill you and cause cancer                            | The radiation is contained in a series of<br>physical barriers; it is difficult to get mobile;<br>even in a severe accident, little will escape                                                                                                                                |
| <i>If the power is uncontrolled,<br/>it can rise exponentially</i> | The power rise is slow and can be stopped in <2sec. by any one of three independent systems; if these fail the reactor core will be damaged and the chain reaction will stop                                                                                                   |
| <i>Power reactors can be used<br/>to make bombs.</i>               | The fuel is highly radioactive and a "rogue"<br>group would more likely kill themselves than<br>anyone else. A government could do it but a<br>small dedicated military reactor would be far<br>more effective. An enriched uranium bomb<br>does not require a reactor at all. |



#### The Chernobyl Disaster

 More than 12,500 of the 350,000 people who worked on the Chernobyl cleanup have since died



 For a population of the age and sex distribution of the "liquidators" in 1986, the normal mortality rate was 3 per 1000 per year. Thus the "expected" number of deaths would be:

350,000 people x 12 years x 3/1000

= 12,600

- The number should be larger (by 50%) because the normal rate of 0.3% increases as the group ages
- Is reporting inadequate? Does monitoring improve the life expectancy of the liquidators?



### What is the Public Hazard?

- chemical? Chlorine for water treatment
- biological? None
- physical? Nuclear explosion impossible
- radiological? Small risk of delayed effects, very small risk of prompt
- psychological? Chernobyl, Indian nuclear tests



### Effects of Radiation

- prompt (deterministic, non-stochastic)
  - 1 Sv + : illness
  - 3 Sv + : increasing risk of death (LD 50 is 3 to 10 Sv)
- delayed (random, stochastic)
  - risk of cancer
    - 0.25 Sv approx. 0.5% increase in individual risk
  - risk of damage to foetus
  - risk of genetic damage
    - not observed in humans



# **EXAMPLES OF RADIATION DOSE**

|          | 0.0000  |     |                  |               |             |               |         |
|----------|---------|-----|------------------|---------------|-------------|---------------|---------|
|          |         |     | ix. în Canada    | , banned foo  | d from Russ | ia after Cher | nobyl   |
|          | 0.00003 | Ту  | pical from CA    | NDU           |             |               |         |
|          | 0.00083 | Ма  | iximum, Thre     | e Mile Island |             |               |         |
|          | 0.002   | Na  | tural, in Toro   | nto, /yr.     |             |               |         |
|          | 0.005   | Sir | ngle failure lir | nit           |             |               |         |
|          | 0.01    | Na  | tural, in Kera   | la, /yr.      |             |               |         |
|          | 0.25    | Du  | al failure limi  | t             |             |               |         |
|          | 1       | Na  | usea             |               |             |               |         |
|          |         | Fir | efighters at C   | Chernobyl     |             |               |         |
|          |         |     |                  |               |             |               |         |
| <b>0</b> |         | 2   | 4                | 6             | 8           | 10            | Dose (S |



### What Is the Goal of Reactor Safety?

- To prevent prompt effects with a high degree of assurance and minimize the risk of delayed effects
- Typically
  - frequency of a large release < 10<sup>-6</sup> per reactor-year
  - frequency of a core melt (intact containment) < 10<sup>-5</sup> per year
- We will cover in next lecture!



### Bad and Good Things About Radioactivity

- It's highly concentrated. A reactor contains only a few hundred grams of I<sup>131</sup>; if it were all released to the air at once, the dose at the boundary could be several Sv.
- It can't be seen, smelled or felt. You can't tell if you're being irradiated (at low doses).
- It remains hazardous for a long time and must be guarded.

- Because the physical quantities are small, they can be easily contained. lodine is chemically active & can be trapped (~99.99% effectiveness) in water. Accidents are wet.
- You can detect smaller quantities of radioactivity than almost any other hazardous material (~50x less than occupational limits).
- It's one of the few hazards which becomes less harmful with time.



# Where is the Radioactivity?

- uranium dioxide fuel
  - >90% in ceramic fuel
- fuel-sheath gap
  - <10% in normal operation (gaseous)</p>
- spent fuel bay
  - large inventory of long-lived fission products
  - little driving force
- fuelling machine
  - up to one or two channels' worth (< 0.5% of bundles)
- tritiated heavy water (DTO) in coolant and moderator



<10%

#### A

# Safety - Stopping the Movement of Radioactivity

- prevent radioactivity from going where it isn't supposed to
- use physical barriers
- mobility affected by:
  - temperature
  - physical form
  - chemistry
  - physical barriers
  - decay





## Safety Design

- prevent fuel from overheating
- overheating mechanisms (power/cooling mismatch)
  - power rise
  - loss of coolant / cooling
- three safety functions
  - control power and, if needed, shut down reactor
  - remove decay heat
  - contain fission products



#### Safety Functions - Power Control

- at criticality, the number of neutrons produced in one generation (n<sub>i</sub>) is the same as the number produced in the next generation (n<sub>i+1</sub>)
- or, production = losses (leakage + absorption)
- if n<sub>i+1</sub> > n<sub>i</sub>, the power increases; e.g., if n<sub>i+1</sub> = 1.002n<sub>i</sub>, then in each generation:
  - N, 1.002N, 1.002<sup>2</sup>N, 1.002<sup>3</sup>N, 1.002<sup>4</sup>N... a geometric series



### **Delayed Neutrons**

| Subcritical  | Critical           | <b>Supercritical</b> |
|--------------|--------------------|----------------------|
| <b>r</b> < 0 | $\boldsymbol{r}=0$ | <b>r</b> > 0         |

- 99.4% of neutrons are "prompt"
  - can cause next fission in 1 ms. in CANDU, 0.02 ms in LWR
- 0.6% are "delayed" from seconds to tens of seconds
- basics of safe reactor control:
  - negative or small prompt feedback (fuel temperature Doppler)
  - limit excess reactivity (require delayed neutrons to keep reactor critical, or r < 0.0064 or 6.4 milli-k)

30/06/1999 9:28

Nuclear Reactor Safety for Science Teachers - web.ppt Rev. 2 vgs



#### Reactor Period vs. Reactivity





### Sources of Positive Reactivity

- all reactors: withdrawal of control rods
- CANDU: boiling of the coolant
- BWRs: collapse of boiling of the coolant
- PWRs: drop in coolant temperature
- positive reactivity insertion in CANDU:
  - loss of reactivity control up to 1 mk/sec
  - large loss of coolant up to 8 mk/sec



### What Does that Mean for Design?

- in CANDU: shutdown time needed is about 1.5 seconds achievable with mechanical (shutoff rods) or hydraulic ("poison" injection) devices
- in LWRs: prompt neutron lifetime is about 10 times shorter
  - rod ejection accident: prompt critical in << 1 sec.
  - need (and fortunately have) an inherent fast feedback
    - Doppler effect, shift of UO<sub>2</sub> resonance absorption
- are there any disadvantages to a fast, prompt negative reactivity feedback due to temperature
  - in the fuel?
  - in the coolant?



# Shutdown Systems in CANDU





### Safety Functions - Decay Heat Removal

- each isotope decays with characteristic half-life
- sum total is what matters
- after about 4 months, can remove heat from channels, even if empty, without fuel damage
- sets mission time of systems for decay heat removal





### Systems for Decay Heat Removal

- If there is *no* hole in the cooling system:
  - backup supplies of water to the boiler secondary side
  - separate decay heat removal system (shutdown cooling)
  - make a small hole and keep up with it
    - in LWRs, feed & bleed
    - in CANDU not desired but will occur if you do nothing
- If there *is* a hole in the cooling system:
  - pour water in as fast as it is being lost (ECC)
  - cool it and recirculate it from the floor
  - contain radioactivity in the building
    - fuel may be damaged if break is large



## Chemistry

one of most significant isotopes in an accident is I<sup>131</sup>

- volatile, short half-life [8 days]

 Caesium also released, and combines almost instantaneously with iodine:

- Cs + I  $\rightarrow$  CsI

- in the presence of water, CsI dissociates:
  - CsI  $\rightarrow$  Cs<sup>+</sup> + I<sup>-</sup>
- hard to get the iodine out of the water (like getting chlorine out of the sea)
- moral of TMI vs. Chernobyl wetter is better



## Some Fundamental Principles of Safety Design

- redundancy: ensure that safety does not depend on any single system functioning correctly
- *reliability:* design to numerical reliability targets (999/1000)
- testability: ensure systems are testable to demonstrate their reliability
- independence: ensure systems which perform the same safety function are independent
- *separation:* ensure systems which perform the same safety function are spatially separated
- *diversity:* ensure where possible that systems which perform the same safety functions are of dissimilar design
- fail safe: ensure system/component fails safe if practical

30/06/1999 9:28



## Containment of Radioactivity

- leaktight concrete building around major sources of potentially mobile radioactivity
- lined, prestressed
- why are the walls so thick (0.7 to 1.5m)?
  - shielding of gamma rays
  - withstand interior pressure (»200 kPa)
- leaktightness: typically from 0.5% to 0.1% per day at design pressure
- water spray to control pressure / vacuum building





## Monitoring

- provide two control rooms from either of which:
  - the plant can be shut down
  - decay heat can be removed
  - barriers to release of radioactivity can be maintained
  - the plant state is known





### Severe Accidents

- "if the defences you have put in <u>all</u> fail, what happens?"
- in LWRs: leads to
  - melting of reactor fuel (TMI)
  - penetration of reactor pressure vessel
  - eventual penetration of containment basemat or overpressure of containment building
- the most likely outcome:
  - no prompt deaths
  - inferred delayed cancer cases which cannot be detected due to "natural" cancers



### **CANDU - Moderator as Heat Sink**





#### Shield Tank as Heat Sink



Shield Tank Can remove 0.4% decay power. Takes >20 hours to heat up and boil off with no heat removal Calandria Vessel Fuel Channels **Moderator** Can remove 4.4% decay power **Debris spreading &** Takes >5 hours to cooling area heat up and boil off with no heat removal



### Toward Safer Designs...

- current evolutionary designs
  - ensure a water covering over the damaged "core on the floor" & remove heat from containment
- passive designs:
  - passive: a component or system which does not need any external input to operate (e.g., electrical power)
  - usually uses gravitational forces to supply water, natural convection to transport heat, capability to store heat
  - sometimes requires active valves, signals
- passive designs allow more time to arrest an accident before core damage and are believed to be simpler



Nuclear Reactor Safety for Science Teachers - web.ppt Rev. 2 vgs



### Failure Modes of A Household Fuse

- Is a passive fuse better than an active circuit breaker?
  - wrong material used in wire
  - wrong size wire used
  - internal short in fuse
  - wrong size fuse used in socket
  - fuse defeated by putting in penny instead
  - electrician cross-connects two circuits
- how many of these are detectable by test?



### Conclusions

- are reactors safe?
- are reactors acceptably safe?
- is reactor safety amenable to scientific discipline: well-posed questions and objective answers?