

Risk

Dr. V.G. Snell Director Safety & Licensing

28/06/1999 14:29

Risk for Science Teachers.ppt Rev. 1 vgs

1

Contents

- What is Risk?
- Some Everyday Examples
- Safety Goals for Nuclear Power Plants
- How Is Risk Calculated?
- Worked Example A Car Braking System
 - Cross Links
- Sample Results for Nuclear Power Plants
- Conclusions

What Is Risk?

Risk = Frequency of an event x consequences of the event

- Examples of risk:
 - annual individual risk of death
 - annual nuclear plant risk of core damage
 - annual nuclear plant risk of a large release of radioactivity
 - risk of psychotic reaction to malaria drug, per dose

Safest and Most Dangerous Occupations*

Occupation	<i>Fatalities / 100,000 / year</i>	
Administrative support, clerical	1	
Executive & Managerial	3	
News Vendors	16	
Police	17	
Truck drivers	26	
Farm Workers	30	
Construction labourers	39	
Miners	78	
Pilots & navigators	97	
Lumberjacks	101	
Sailors	115	

"Acceptable" (since accepted) Occupational Risk?

5 per 100,000 per year (5 x 10⁻⁵ per year) to 100 per 100,000 per year (1 x 10⁻³ per year)

Non-Occupational Accidental Fatalities*

Accident	<i>Fatalities / 100,000 / year</i>
Lightning	.06
Poisoning	1.5
Firearms	1.1
Drowning	3.6
Fires	3.6
Falls	8.6
Motor vehicle	27

"Acceptable" (since accepted) Public Risk?

4 per 100,000 per year (4 x 10⁻⁵ per year) to 27 per 100,000 per year (3 x 10⁻⁴ per year)

Total risk of accidental death = 4×10^{-4} per year

Note that these are population-average risks Some groups will be considerably more (or less) at risk than others.

Many Factors Determine "Acceptability"

- occupational risk vs. public risk
- presence of offsetting benefit
- voluntary vs. involuntary risk
 - can one really eliminate risk from motor vehicles by not driving??
- "dread" factor (cancer vs. automobile accident)
- perceived ability to control risk
- knowledge and familiarity (coal mining vs. operating nuclear plant)

Safety Goals for Nuclear Power Plants

- Safety goal an acceptable value of risk
 - risk from NPPs chosen to be very small in comparison to comparable activities
 - e.g., Canada in 1960s "five times safer than coal"
- Risk of prompt fatality from NPP should be << risk of prompt fatality from all other causes
- Risk of fatal cancer from NPP should be << risk of cancer from all other causes

Risk of fatal cancer *just* from "natural" radiation in Canada =

0.002Sv/year x 0.02 cancers/Sv = 4 x 10⁻⁵ per year (according to linear dose-effect hypothesis)

Numerical Safety Goals for Nuclear Power Plants

- For existing nuclear power plants:
 - risk of a severe core damage accident must be < 10⁻⁴ per plant per year
 - risk of a large release must be < 10⁻⁶ per plant per year
- For new nuclear power plants:
 - factor of 10 lower on both counts
- What other industries set safety goals? (think of at least two)

How is Risk Calculated?

- For frequent events easy just collect the *observed* statistics
- For rare events build up from combinations of more frequent components
- e.g., risk / year of a plane crashing on the Skydome = risk of a plane crash per kilometer of steady flight
 - x number of flights / year landing or taking off from Toronto airport
 - x fraction of flights which fly over Skydome
 - x diameter of Skydome in km.
 - does not account for evasive action, skyjacking

Fault trees and Event trees

- to determine the risk from rare events:
 - calculate frequency or probability of a system failure (fault tree)
 - calculate consequences of the system failure (event tree)
 - in the event tree, assume each mitigating system either works or fails; if it fails, account for the probability of failure
- end result is the frequency or probability and consequences of a family of events

A Few Symbols

- AND gate:
 - event A AND event B must occur in order for event C to occur
- OR gate:
 - event A OR event B must occur in order for event C to occur

Worked Example - A Car Braking System

- Fault tree: What is the probability of failure of the normal car braking system on demand?
- Event tree: What are the consequences of failure of the normal car braking system?

A

Fault tree

Fault Tree with Sample Demand Probabilities

Observations

- using two independent components or subsystems greatly reduces the contribution of a particular failure mode
 - probabilities multiply except for cross link failures!
- failure probability can be greatly influenced by:
 - preventative maintenance (worn pads)
 - testing (broken linkage)
 - inspection (empty cylinders)
 - quality of materials

What Are the Mitigating Systems?

- emergency brakes
- downshifting
- turning off ignition
- steering to avoid accident...
- need human for all of them

Event Tree

Cross-Links make probabilities not independent

- common cause failure
 - common maintenance errors
 - common fabrication errors
- common component failure
 - failure of the brake reservoir will drain both braking circuits
 - both emergency brake and regular brake share same shoes
- common support system
 - e.g., failure of air conditioning in a control room can cause multiple computer failures
- external event fire, earthquake, tornado
- common harsh environment

Nuclear Power Plants - Fault Trees

- loss of electrical power
- loss of feedwater
- steam main break
- loss of coolant accident
- loss of flow
- loss of computer control
- loss of support services:
 - instrument air, process water
- loss of reactivity control
- etc.

Nuclear Power Plants - Mitigating Systems

- shutdown system #1
- shutdown system #2
- emergency core cooling system
- containment
- moderator
- shutdown cooling system
- auxiliary feedwater
- emergency (seismically qualified) water
- emergency electrical power
- OPERATOR!!

28/06/1999 14:29

Results of Risk Analysis

- Types of Risk Analysis:
 - Level 1 Severe Core Damage / Core Melt Frequency
 - Level 2 Frequency of Large Release
 - Level 3 Frequency of Health Effects
- CANDU severe core damage frequency:
 - ~10⁻⁵ per year for existing plants
 - ~10⁻⁶ per year for new designs
- WASH-1400 for existing LWRs:
 - core melt frequency = 2 x 10⁻⁴ per reactor-year [since reduced]
 - frequency of large release = 10⁻⁶ per reactor-year

Severe Core Damage for CANDU 6

Conclusions

- risk analysis is a way of predicting the hazard from *rare* events
- it is excellent at ranking technologies and looking at relative risks
- there are some uncertainties in absolute predictions:
 - adequacy of component failure data
 - have we got all the cross-links?
 - human performance models
- it allows rational decision making on safety
 - most effective allocation of safety resources