Science of Nuclear Energy and Radiation

Health Physics Orientation

Dave Tucker Department of Risk Management Services 1998 June

Health Physics Orientation OH# 1

Outline...

- Modes of Exposure to Ionizing Radiation
 ⇒Internal
 - ⇒External
- Risks and Hazards of Ionizing Radiation
- Control of Exposures
- McMaster University Radiation Protection
 Program

Exposure to Ionizing Radiation

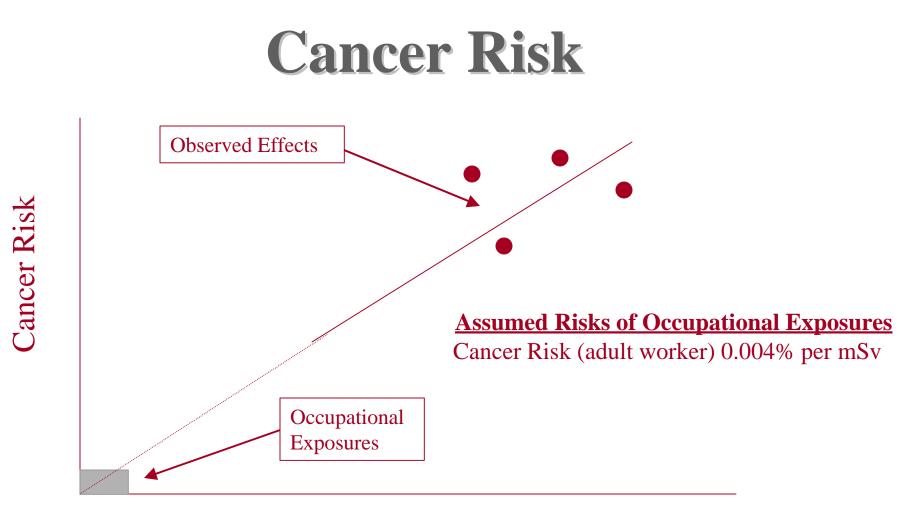
- α , β , γ , η interact in any material and deposit energy through ionization
- The amount of energy deposited and its potential to cause harm are described by *Dose*
- *Dose* is measured in units of mSv (millisieverts)

How much is a mSv?

- Background dose is about 3mSv per year
- Abdominal X-Ray leads to about 1.3 mSv
- Permissible occupational doses are...

Dose Type	Workers (mSv/y)	Public (mSv/y)	Pregnant Woman
Effective Dose	50	5	1 mSv abdomen+ 0.05 ALI
Lens of the eye	150	15	
Any single organ	500	50	30
Hands and feet	500	50	50

Health Physics Orientation OH# 4


Risks and Hazards

- In living matter, damage to DNA may result from ionization
- Consequences of damage may be ⇒NOTHING
 - \Rightarrow cancer
 - \Rightarrow genetic effects
 - \Rightarrow radiation injuries

Controlling Risk

- Radiation Injuries
 ⇒have a threshold
 ⇒below threshold there is no effect
- Avoid by keeping doses to permissible levels

 Cancer and Genetic Effects
 →assumed slight increase in risk proportional to dose for any exposure
 Minimize chance by maintaining doses As Low As Reasonably Achievable (ALARA)

Dose

Health Physics Orientation OH# 7

Cancer Risk in Perspective

Assumed Additional Risk of Occupational Exposures

Cancer Risk (adult worker) 0.004% per mSv

<u>Baseline Risk</u> Fraction of adults expected to die from cancer ≈ 20 %

Cancer Deaths Expected in a population of 10 000 with no Occupational Exposure 10 000 x 20% = 2 000

Cancer Deaths Expected in a population of 10 000 with 1 00 mSv Lifetime Occupational Exposure Risk changes from 20% to 20.4% $10\ 000\ x\ 20.4\% = 2\ 040$

See HP Manual pg. 17 for more risk perspective

Health Physics Orientation он# 8

Risk of Genetic Effects

- Radiation induced genetic effects have never been observed in humans
- Based on animal experiments they are assumed to occur at about 0.001% per mSv
- Baseline risk for genetic disorders is about 5% in live births (see HP Manual pg. 16)

Health Physics Orientation он# 10