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AbstratA framework alled the MOOSE (MOving Objet Simulation Environment) has beendeveloped for modeling moving omponents in the presene of di�usion phenomena.The framework fouses on general ellipti and paraboli problems whih an be rep-resented on a two dimensional pathed Cartesian grid. The idea of a problem solv-ing environment is presented and the MOOSE is developed within this oneptualparadigm using several novel implementation tehniques. Code generation, symboliomputation, and high performane spetral solvers are joined within a �exible anduni�ed tool that implements a mesh linking algorithm apable of minimizing errorsindued by moving omponents in lose proximity to material disontinuities.The MOOSE onstruts linear �nite di�erene models based on symboli math-ematial desriptions supplied by the model designer. Solutions are omputed bytransforming abstrat desriptions into matrix notation ompatible with a olletionof high performane parallel linear and eigenvalue solvers. Design tehniques are pre-sented for the implementation of a pathed non-onformal mesh that links groups ofsub-meshes, whih an move relative to one another. The generation of a sequene ofmatries whih model dynami omponents using moving meshes that onserve �owat their boundaries, and the performane of the framework when applied to a varietyof test ases is disussed.A major ase study based on the 1994 reativity insertion inident whih ourredat the MMaster Nulear Reator is undertaken. The �exibility, preision, and ro-bustness of the MOOSE framework and algorithms are exerised by this study. Theresults from the original teh report are veri�ed for higher dimensional ases.The MOOSE uses tehniques that are mathematially simpler than previouslyaepted non-linear nodal methods used in nulear engineering, but still apable ofiii



easily representing moving omponents. A onise ruleset for linking moving meshesis presented whih is demonstrated by the framework. Error redutions of severalorders of magnitude are demonstrated by the MOOSE's multi-resolution moving meshalgorithm over more ostly brute fore strategies.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering
Chapter 1
Introdution
1.1 Problem Solving Environments (PSEs)Engineering design as an ativity was originally the domain of sale models and math-ematial paper approximations that gave good intuition to system designers as to howa new mahine would perform. In the last 50 years omputers have taken an inreas-ing role in the engineering design proess, to the point where today the subjet ofomputational siene and engineering merits treatment on its own. Computationalsiene and engineering is often thought of as a disipline positioned between theoret-ial and experimental areas of siene and engineering [133, 134, 135℄. Relevant areasof engineering [52, 88℄ and siene inlude, but are not limited to, �uid mehanis,thermodynamis, eletromagneti phenomena, nulear reator simulation, weatherforeasting, and airraft design.As simulation osts derease and physial prototype osts inrease there is morepressure to aept simulation results. As a onsequene both model and software val-idation issues are beoming more important. Validation of most simulation systems isoften inadequate. The three priniple soures of simulation error are: inorret math-1



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringematial models, inaurate numerial approximations, and inorretly onstrutedsoftware systems. Comparison with known results is the best form of validation.However, for problems addressed by some software systems there are no known re-sults, for example the next earthquake to hit California, or the next great �re inChiago.The state of the art in omputer hardware provides the engineer who is interestedin simulation with powerful tools at low ost. The urrent di�ulty lies in takingadvantage of these tools. In the last 20 years mathematial libraries have providedan exellent model for software reuse. Many people use ommerial and governmentsponsored libraries suh as NAG, IMSL, and LAPACK [52℄. Libraries in themselves donot entirely solve the problem of model onstrution sine any given library assumes aertain amount of expertise on the part of the user. The user must still onvert theirproblem into the generi mathematial language of the numerial solver, and the usermust understand that language so the orret algorithms an be seleted from thelibrary.The purpose of a Problem Solving Environment (PSE) is to automate the proessof model onstrution by reating a reusable tool for a domain of problems. Thelassial simulation design and onstrution proess is uni�ed in a single tool thatenapsulates expertise from a variety of domains. A PSE ollets together severalsolution methods and models, addressing issues suh as appropriate software reuse,intrinsi model validation, and intelligent algorithm seletion.The ideal PSE is an abstrat onept whih researhers in the area are still strivingto ahieve. PSEs are often limited in their generality, their performane, the solutionalgorithms that they implement, the resolution of the models that they ompute andthe degree to whih the problem solving proess is automated.2
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• PSE should be able to handle:� Problem spei�ation- typially inludes physial model and geometrimodel� Solution spei�ation- failitates the hoie of algorithms and solutionstrategies� Model ompilation and exeution

∗ Sometimes also inludes solution steering, and progress monitoring
∗ Data hek-pointing- alulation may require days or weeks,� Output rendering and analysis, typially graphialPSE researh must somehow address the shortomings in the urrent state of theart. In the last 15 years several workshops and disussion sessions have foused onPSEs. To supplement the reent onferenes a book edited by Houstis et. al [88℄was published whih ollets 28 artiles disussing several important aspets of PSEsalong with a omprehensive bibliography with over 400 entries.Some PSE researh horizons are disussed by John Rie in two separate artiles[134, 135℄, where he desribes multi-physis phenomena and multi-sale phenomena.Aording to Rie, multi-physis phenomena involve two or more separate physialregimes. An example might be heating a pot of water, the heat soure being onesystem, the �uid dynamis of the water would represent the other. Multi-physisphenomena might be spatially and temporally superimposed, or might be separate.The interfaes between the phenomena present a variety of hallenges. It might bedi�ult to obtain information about the interfaes, or in some ases there may be noknown valid models whih desribe the interfaes. Frition, for example, a�ets allsorts of appliations and is espeially relevant for desribing losses that our at an3



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringinterfae. Despite this, there is no reliable onsistent model for frition e�ets whihis universally appliable.Multi-sale phenomena involve vastly di�erent time and spae sales. For examplea jet engine is several meters long, yet its fuel-spray droplets are 5 to 10 mirons. Itsblades are tens of entimeters long, but raks form in areas of tens of angstroms insize. Sine it is impossible to model the entire system at the resolution of mironsthe key issue beomes de�ning a onsistent way to simulate all of these phenomenasimultaneously. The urrent approah is to use models of di�erent sales and use aspeial approximation that links the �ne sale model to the oarse sale model. Thismethod is problem spei� and prone to a variety of errors.The predited growth of omputational power and network bandwidth suggeststhat omputational modeling will shift from fousing on a single omponent designto the design of an entire system. The analysis of an engine involves the domains ofthermodynamis (gives the behavior of the gases in the piston-ylinder assemblies),mehanis (gives the kinemati and dynami behavior of pistons, links, ranks, andso forth), strutures (gives the stresses and strains on the parts) and geometry (givesthe shape of the omponents and the strutural onstraints). The design of an enginerequires that these di�erent domain spei� analyses interat to �nd the �nal solution[18, 87℄.The goal of the PSE is to solve all of these problems in an elegant e�ient pakage.Bringing together the expertise of researhers from a variety of areas and onentratingit into a single tool represents the task faed by the PSE designer. The state of the artin simulation design and implementation today is very muh like the state of the art intype setting and publishing 100 years ago. In an analogous way, simulation researhersare assembling thoughts from movable foundry type, transferred from a distributionbox to a omposition stik, and laboriously mounted into a press to produe several4



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringhundred opies of a single page of a large volume. The PSE designer foresees thefuture of simulation in the form that desktop publishing software may have appearedenturies ago to an early printing press operator.1.2 Addressing Cross Disiplinary IssuesSolving large engineering problems requires the ollaboration of experts from a widevariety of �elds. A typial engineering problem may require:
• Domain engineer- provides speial understanding of problem area
• Numerial speialist- provides expertise in numerial algorithms and methods,parallel omputing, and hardware onsiderations
• Sienti� omputing speialist- provides expertise in optimization, integration,and linear algebra methods
• Software implementation group- supplies the software implementation whihlinks the various omponents together and the implementation of algorithmsdesigned by other speialistsIt is generally aknowledged [52, 122℄ that ollaboration between these diverse groupsis di�ult to establish. While some persons may have skills that over several areas,usually a single person annot aquire all the knowledge required for a high perfor-mane engineering problem. Stanzione writes�To summarize, the heart of the problem is not that inadequate om-puting failities exist to run simulations, but rather that the expertiserequired to reate the simulation odes for the target omputing resoure5



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringis possessed by two distint groups of people. Researhers in the applia-tion domain on one side and [High Performane Computing℄ experts on theother, eah with too many demands from their own �elds to adequatelylearn the others.�[150℄Sienti� researh is inherently an at of ollaborative problem solving. Merely pro-viding aess to omputational resoures and domain tools is not enough to failitateor enhane sienti� problem solving. PSE design is about bridging a gap betweenomputational resoures, appropriate algorithms and the people who need to use thoseresoures.Siene has developed a standard language with many sub-dialets for di�erentsub-�elds. A PSE should use this language. Some parts of sienti� language are wellstandardized, for example symboli mathematis, and numerial algorithms, otherparts are not. In partiular omputer languages for geometry tend to be primitiveand inonsistent. Mesh and grid generators are used to disretize geometry but thesoftware is omplex and less than ompletely robust or reliable [87℄.The experiment is the vehile through whih sientists and engineers attak theirresearh. A study done by [96℄ identi�ed ertain praties in the design and exeutionof models.
• Experiments are built through de�ning sequential steps that utilize the model,observational data, appliation tools, omputers and other misellaneous re-soures.
• The experimentation proess is highly repetitive. A yle of steps is repeatedthat inludes modifying the on�guration and initial onditions of the ompu-tational experiment, exeuting the experiment, and evaluating the generatedoutput and its onvergene to observed or theorized results.6
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• Computational experiments require long sequenes of omputer operations suhas logging into the system, querying for and olleting data from on-line databasesand repositories, running appliations on distributed omputers, apturing ex-periment output to �les, transferring data �les between omputers, applyingtranslators to onvert data formats, and exeuting analysis and visualizationpakages on spei� data sets.
• In designing and exeuting experiments, pratitioners typially maintain thedesign and exeution proesses in notes, maintaining a log of their ativitiesA PSE that aptures not only the language of siene and engineering but also the pro-edures that the sientist or engineer would follow ontributes better to the problemsolving proess [149℄.The use of appropriate abstrations is the key to mastering the language of sieneand engineering, and is the foundation upon whih a well developed PSE must bebuilt. The designer of a PSE is harged with the task of not only solving a di�ultomputational problem, but also of solving that problem in a ontextually spei�way that is meaningful to the pratitioners of the target domain. A tool that requiresthe pratitioner to learn many new task spei� proedures for its use, or delve deeplyinto new areas of siene and gain a deep understanding of methodologies solely forthe purpose of simulation and problem solving, will be less of an aid than a tool whihhides its implementation behind the terminology and proedures of the target user.1.3 Simulating MotionSimulation environments designed to study steady state or transient problems al-ready have many representatives in both ommerial forms, and as researh projets.7



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringFEMLAB is an exellent example of a suessful ommerial PSE that fouses on theappliation of unstrutured �nite element meshes to �uid mehanis, eletrodynamisand a wide variety of other problem domains. An important sub-domain of transientsimulations are those problems that examine phenomena in the presene of movingomponents. PSEs for the study of motion are not well represented. Overture [32, 33℄is one example of an aademi projet whih fouses on linking deformed overlap-ping strutured meshes for the study of �uid �ow problems and moving omponents,however there are very few other general projets in this area.This thesis uses as its target problem one inspired by reator safety analysis [4,57, 61, 69, 106℄. Historially nulear engineering papers have used Cartesian mesheswith non-linear approximations in very large mesh ells to model transient problems.The most popular methods are referred to as nodal methods. Nodal methods [102,109, 123℄ are able to use very large geometri ells beause eah ell uses a omplexset of non-linear equations to estimate the neutron density distribution within thatell. Nodal methods have been reported to be an order of magnitude faster thansome linear implementations of equal preision. Control rod motion is modeled withnodal methods by using speial approximations [95℄ to estimate the behavior of theleading and trailing ell of moving assemblies. This style of solution is inompatiblewith existing generi tools like FEMLAB or Overture, preluding their appliation.Existing multi-physis PSEs do not provide a drop in replaement solution for movingassembly simulation senarios.Nodal methods have a variety of di�ulties. The mathematis behind nodal meth-ods tends to be dense. Simulations based on nodal methods have limited generality. Anodal solution is often only valid for a narrow range of solutions, and nodal methodsare also often limited to a very few number of energy groups, typially two. The orig-inal nodal methods required omplex alibration of linkage onstants. While modern8



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringnodal methods have resolved the problem of alibrating ell by ell linkage, it has beenat the prie of further mathematial omplexity. Given some of the problems withnodal methods, and the absene of a generi tool for modeling moving omponents,provides the speial fous for the development of the MOOSE framework.In the last 15 years there have been remarkable innovations in solution tehniquesfor linear [21℄ and eigenvalue [17℄ problems and some pratial implementations ofthose solution tehniques have been produed. Very reently, a new publi domaineigenvalue solver, SLEP [81℄, based on the already well established high performaneparallel linear solver PETS, has reahed a state of noteworthy maturity. SLEP'smost reent release (as of Ot 2006) inorporates the Krylov Shur method whihprovides reliable and fast alulations of extremal eigenvalues. SLEP is able to solvevery hard eigenvalue problems of the general form Ax = kBx. Although not limitedto the followings ases, but of interest to pratitioners of nulear engineering, SLEPan handle problems where A is non-symmetri, and where B is singular, and SLEPan be on�gured to solve for the single smallest eigenvalue near unity. This lassof problems orresponds to a general interpretation of the steady state multi-groupneutron di�usion problem. While existing PSEs do take advantage of similar solvers,issues related to motion as it ours in the ontext of a reator safety analysis problemrequire speial attention.In partiular this thesis will disuss what bene�ts ould be realized through linkingtogether a olletion of meshes, what preise tehniques are required to ensure thatthe linked meshes behave well, how errors assoiated with moving omponents an bemeasured and analyzed to establish parameters for the estimation of the orretnessof the mesh, all done within the ontext of linear approximations so that the mostreent advanes in linear problem solving libraries an be taken advantage of.The MOOSE is suh a tool. Its overall design is not limited to the onstraints of9



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthe nulear engineering problem, however this problem presents a su�ient numberof hallenges that by studying it, the breadth of problem types that the MOOSE isapable of modeling an be illustrated. The MOOSE is able to model both transientand steady state problems haraterized by ellipti and paraboli equations, and to alimited extent some hyperboli equations. Both linear and eigenvalue problems anbe spei�ed with the MOOSE. Simulations are limited to two dimensions, and theMOOSE provides only a very rudimentary user interfae. Despite these limitations,the MOOSE is still extremely �exible, and in the ourse of this thesis a variety ofstudies will demonstrate the breadth of problem types the MOOSE is able to address.1.4 The MMaster Nulear ReatorThe MMaster Nulear Reator (MNR) has a 45 year history on the MMaster am-pus. It has an operating budget of several million dollars per year, and it is one of thefew (if not the only) ommerially self sustaining researh group on ampus, derivingfunding not only from researh grants but also from the sale of produts and ser-vies. The reator brings together individuals from a variety of disiplines inludingphysis, eletrial engineering, omputer siene, mehanial engineering, and materi-als siene as well as the interests of members from areas not typially assoiated withengineering like mediine and arhaeology. Over a dozen sientists and engineers havedediated themselves to the maintenane and study of the experimental MaterialsTesting and Researh Reator (MTRR).Reator modeling problems are multi-physis problems. Several physial proessesneed to be modeled onurrently, inluding �uid �ow through the ore, neutron �uxprodued within the ore, and other e�ets like heat distribution aross the ore el-ements are also important. In addition to the physial proesses of the ore the10



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringeletrial and ontrol mehanisms play an important part of the safety analysis. Thereator as a mehanism is not only a omplex physial system whih ombines �ssion-ing uranium with a heat transport model, but also links these physial phenomenathrough a omplex system of sensors, ontrol relays and safety iruits whih mustrespond with 100% reliability in small frations of seonds. Reator omponents anhange position both in a gross way, as in the reorganization of fuel assemblies inthe ore, but also in a �ne way as in the repositioning of a ontrol rod by a smallfration of a entimeter. Developing a system apable of modeling all of these pro-esses onurrently presents a wide variety of tehnial di�ulties at the utting edgeof omputational siene. This thesis will address some of these simulation models.1.5 The MOOSEA major subjet of disussion will be the presentation of a problem solving frameworkthat models the motion of omponents within a multi-physis view of engineeringobjets and makes use of existing sienti� software omponents. Issues regardingtest beds, important omponents and knowledge bases will not be addressed. Thevalidation of the models will be treated with spei� examples, rather than the moregeneralized automati validation disussed by some authors.The MOOSE was developed with the goal of being able to examine problemsthat study moving omponents. Its partiular fous is maintaining a high degree ofpreision without resorting to brute fore tatis like using highly re�ned meshes orexessively small or stritly regimented time inrements to model position hanges inits omponents. As a prototype PSE, the MOOSE attempts to redue the amount ofwork required for the implementation of high performane �nite di�erene simulations.As a high performane framework, the MOOSE addresses several open questions re-11



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringlated to the mathematial approximations neessary for the preise solution of steadystate eigenvalue problems and linear transient problems for a variety of problem areas.This thesis provides 5 major ontributions1. a learly de�ned methodology for the linking of meshes as it applies to movingomponents within advetive and di�usion based �nite di�erene simulations2. detailed error analysis whih address two major questions:(a) the extent to whih using oarse meshes with speial motion tehniquesan improve upon performane (in terms of preision and exeution times)over lassial linear tehniques using dense meshes, or alternatively lassialnon-linear tehniques based on oarse meshes(b) whether interpolation is su�ient to onnet meshes, or whether onser-vation tehniques are required, along with several speial onsiderationsrelevant to di�usion problems not before disussed in the literature3. detailed re-examination of the estimated power peak reported in the 1997 MNRtehnial report4. a prototype implementation of the MOOSE framework learly identifying avariety of design issues and solutions to those problems using various reenttehniques5. the �rst highly developed nulear appliation based on the Krylov-Shur methodimplemented within the SLEP projet and a pratial examination of thissolver's performane, preision, and apabilitiesWhile the MOOSE framework is generi enough to address a broad array of problemtypes, its development is inspired by a partiular problem, that of modeling the motion12



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringof omponents. Chapter 2 will present a review of literature as it relates to this thesis,a review of lassial sparse matrix solution tehniques, a review of time integrationmethods, a disussion of established mesh linking methodologies as they relate to thesimulation of motion, and a general history of PSEs. Chapter 3 presents the MOOSEarhiteture fousing on major framework omponents and methodologies, inludinga disussion of speial ode generation tehniques as used by the MOOSE, mathemat-ial libraries and external pakages used by the MOOSE, and details spei� to themathematis behind the MOOSE's mesh linking proedures. Chapter 4 develops aolletion of simple steady state and transient models drawn from standard examplesfrom a variety of areas and ompares the solutions generated by the MOOSE withlosed form solutions for the purpose of validating the MOOSE. Representatives fromthe three fundamental types of PDEs, paraboli, ellipti and hyperboli equationsare used to verify the implementation of the MOOSE. Chapter 5 develops a singledetailed appliation for the study of the 1994 refueling inident at the MNR, draw-ing onlusions about the MOOSE's preision versus naive methods, and providing are-examination of the maximum power reahed by the ore. The refueling inident isstudied as both an eigenvalue problem and as a transient problem. The �nal hapterwill disuss issues unexplored by this thesis, suggest problem areas other than neutrondi�usion that ould bene�t from the presented tehniques, as well as several proposedfuture projets.

13
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Chapter 2
Literature Review
This hapter presents a review of literature related to the development of the MOOSE.The MOOSE, as a PSE framework, draws on a variety of implementation tehniques.Its design was modeled on similar tools developed for various appliations. The �rstsetion of this hapter presents a short review of physial models used in subsequenthapters. A lassi�ation of models as ellipti, paraboli and hyperboli is presentedfollowed by several details neessary for the understanding of the neutron di�usionmodel as it is presented in Chapter 5.The seond setion of this hapter presents a summary of some of the fundamen-tal tehniques used by the MOOSE to solve linear problems and eigenvalue problems.The MOOSE is based on a olletions of numerial linear pakages. Linear and eigen-value solvers are not implemented within the MOOSE. Rather than presenting thedetails behind the algorithms developed by other researhers this setion fouses onthe harateristis of the solution methods and addresses questions related to whyertain methods were preferred over others rather than a disussion of how the meth-ods are implemented. Speial attention is given to iterative linear solvers. Transientintegration methods are also addressed. 14



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe third setion of this hapter presents a short disussion of tehniques for map-ping engineering problems on to omputers. Various mesh tehniques are disussedand reasons for seleting one mesh design over another are addressed. One to one ge-ometri mappings are ontrasted with strategies that deal with omponents that arelinked more abstratly in terms of input and output ports. Nulear engineering nodalmethods are presented as a speialized ompromise between one to one mappings andlinked omponent methods.The last setion of this hapter presents a review of problem solving environmentsdesribed in engineering literature in the last 10 years. A fair degree of latitude forwhat might be onsidered a problem solving environment is taken, onsequently awide variety of projets are desribed. The breadth of representatives taken from theliterature gives a good indiation as to what has been aomplished to date and givesa sense as to where future researh an be direted.2.1 Problems of InterestThis setion will summarize some of the physial problems that fall within the MOOSE'sdomain. Partial di�erential equations are involved in the desription of virtually everyphysial situation where quantities vary in spae and time. The �eld U = U(x, y, z, t)used to desribe these quantities must ontain spae and time oordinates as inde-pendent variables. The independene of eah variable means that the derivatives inthe equations must be partial derivatives. PDEs inlude phenomena as diverse as dif-fusion, eletromagneti waves, hydrodynamis, and quantum mehanis (Shrodingerwaves). In all but the simplest ases these equations annot be solved analytiallyand so numerial methods must be employed for quantitative results. In a typialnumerial treatment the dependent variables (suh as temperature or eletrial po-15



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtential) are desribed by their values at disrete points of the independent variables(e.g. spae and time). Through appropriate disretization the PDEs are redued to alarge set of di�erene equations. As time evolves, the hanges in the �eld U(x, y, z, t)at any one position a�ets the �eld at neighboring points.2.1.1 Classifying PDEsMost of the physially important PDEs are of seond order and an be lassi�ed intothree types: paraboli, ellipti, or hyperboli. Roughly speaking, paraboli equationsinvolve only a �rst-order derivative in one variable, but have seond order deriva-tives in the remaining variables. Examples are the di�usion equation and the time-dependent Shrodinger equation, whih are �rst order in time, but seond order inspae. Ellipti equations involve seond order derivatives in eah of the independentvariables, eah derivative having the same sign when all terms in the equation aregrouped on one side. This lass inludes Poisson's equation for the eletrostati po-tential and the time-independent Shrodinger equation, both in two or more spatialvariables. The hyperboli equations involve seond derivatives of opposite sign, suhas the wave equation desribing the vibrations of a strethed string [105℄. These de-sription are often presented more formally [108℄ by expressing a general 2-D timeindependent PDE as
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringfor all x and y the equation is alled paraboli. An example is the 1-D heat equationwith B = C = 0
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(2.3)where T represents the heat potential, k represents the thermal ondutivity, C rep-resents the spei� heat apaity and ρ is the material density.When B2 > AC for all x and y, the equation is alled hyperboli. An examplewith B = 0 and AC < 0 is the 2-D wave equation

∂ψ2 (x, y, t)

∂x2
+
∂ψ2 (x, y, t)

∂y2
=

1

c2
∂2ψ (x, y, t)

∂t2
(2.4)where ψ is the wave displaement in the media, and c is the propagation speed.When AC > B2 for all x and y, the equation is ellipti. An example is Laplae'sequation
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= 0 (2.5)where U might represent eletrial potential within a stati �eld.A olletion of examples of these fundamental problem types and typial solutionsin one and two dimensions will be presented in Chapter 4.2.1.2 Simulation Problems of Interest to the MNRThe MMaster Nulear Reator is a pool type reator used for researh and isotopeprodution purposes. It uses non pressurized light water as a moderator and oolantand enrihed uranium as a fuel soure. Fuel assemblies are about 1 meter in length,are expensive to aquire and expensive to dispose of. A reator ore, like the MNR's,17



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringan load about 30 fuel assemblies at a time in a retangular array, and onsumes about6 omplete assemblies during the ourse of the year operating at about 2 megawatts.The reator operates 5 days per week 16 hours per day.The positioning of the fuel assemblies determines how e�iently the uranium fuelis used. E�ient loading of fuel leads diretly to ost savings for the reator. Costsavings an potentially be on the order of $100,000 per year for the MNR even foronly a small improvement in the ore arrangement. Finding an optimal ore designis a non trivial problem, and is potentially intratable if approahed in a brute foreway [129℄.The MNR uses the radiation produed by the ore for both aademi and ommer-ial appliations. Simulation models are essential to understand the ore's behaviorsine there is no omprehensive way to measure the radiation density at all points inthe ore.Classial reator ore studies often make assumptions about whih proesses toinlude and whih proesses to neglet. Usually these deisions are made to keepproblems tratable by limiting the geometry, dimensionality, number of tightly oupledproesses, or the time domain over whih the model applies. There are no models atthe MNR whih ombine �uid �ow and neutron �ux in a detailed way, and there areno transient models whih apture the motion of ontrol rods or fuel assemblies.Current tools inlude CATHENA [40, 75℄, a numerial modeling tool designed forCANDU reators. CATHENA analyzes a thermal hydrauli system at a oarse level,that of pipe length, valve, and grossly segmented ore. CATHENA has been usedmainly for steady-state alulations at MNR, e.g. temperature distributions withinthe fuel, lad, and oolant under operating onditions. Some transient work has beendone with this ode [69℄. RELAP [146℄ and RETRAN [2, 61, 126℄ are related toolsused in the US for power reators. 18



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringMCNP [35, 145℄ is a steady state neutron transport tool whih works by trakingindividual neutrons, this allows for very �ne details to be modeled. Neutron transportis omputed in based on Monte-Carlo models, MCNP simulations are limited to steadystate and require prohibitive amounts of omputational resoures. Material interfaesan be examined, and arbitrary ore geometries an be designed. MCNP is sometimesoupled with a fuel management ode suh as 3DDT or REBUS.WIMS [101, 111, 170℄ is a deterministi transport model used for the estimationof material ross setions. It provides a bridge between the theoretially preisebut omputationally expensive transport simulations and the more omputationallye�ient, but more approximate di�usion based simulations. WIMS solves the neutrontransport equation for some given segment of geometry, for example a fuel assembly(in 1D or 2D) and then homogenizes the solution, ollapsing the energy groups, sothat the result is then representative of the entire ell. The results are the detailed�ux and power distributions within the ell, although the main result of interest arethe homogenized onstants.3DDT and REBUS are deterministi di�usion theory odes able to solve three di-mensional steady state ore models, and some transient models related to the burningof fuel. Sine they are di�usion-theory based they an not handle detailed heterogene-ity of materials.Additional simulation odes are disussed in artiles by [16, 27, 92, 93, 132, 178℄.2.1.3 Di�usion Methods for Reator KinetisSine the priniple ase study presented in Chapter 5 fouses on a reativity inser-tion inident desribed in [69℄ some extra attention is devoted to the neutron dif-fusion equation. The neutron population at a point (
~r, E, Ω̂, t

) is haraterized by19
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n

(
~r, E, Ω̂, t

)
dV dEdΩ̂, the number of neutrons at time t in volume element dV sur-rounding the point ~r and in energy band dE about E moving in diretion Ω̂ in solidangle dΩ̂. The neutron energy is haraterized as a veloity v when multiplied by aross setion term to ompute a reation rate. In most ases the neutron populationis so large (typially, ~108 neutrons/m3) that the neutrons an be treated as a on-tinuum. At the same time the density of neutrons is so low ompared to the atomidensity of the medium that neutron-neutron interations an be ignored. While mi-grating in a reator ore the neutrons interat with nulei of the ore materials untilthey are either absorbed or leak out. The neutron-nulear interations are often har-aterized by the marosopi ross setion Σα whih spei�es the probability per unitdistane of travel that a neutron will su�er a ollision leading to a reation of type α(where α ould represent absorption 'a', �ssion 'f', sattering 's', et.).The neutron transport equation [53, 153℄ is essentially an expression of onserva-tion for the the neutron density within an arbitrary volume V about r̂. The rate ofhange of neutron density with respet to time is equal to the sum of all loal souresand sinks of neutrons within a volume V .

20



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringNeutron populations an be desribed very preisely by the neutron transportequation as
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(2.6)Where

−∇ · Ω̂ neutron transport into and out of ontrol volume
Σt (r̂, E) probability that a neutron will su�er a ollision
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s
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) soures inluding �ssionAlthough neutron transport theory provides the most exat desription of the neu-tron behaviour in a reator, modeling the neutron kinetis in the framework of thetransport theory would be prohibitively expensive. Multi-group di�usion theory is anapproximation to the neutron transport proess. It has been found to be adequatefor many reator analysis problems of pratial interest. Multi-group di�usion the-ory, while simpler than transport, theory an also present a host of di�ulties. Ifapproahed in a naive way problems derived from di�usion theory an be intratable.Multi-group neutron di�usion theory uses a variety of approximations to modelthe ontinuous terms of the neutron transport equation. Multi-group di�usion, as thename implies, makes two signi�ant simpli�ations to the transport model. The �rstis treating the ontinuous energy integral term ∫ ∞

0
dE ′ as a disrete spae, usuallywith a small number of divisions. The seond important simpli�ation is droppingthe angular dependene term ∫

4π
dΩ̂′ by assuming that sattering is for the most partanisotropi. The veloity and neutron population terms, nv, are normally lumped21



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtogether and treated as a single quantity alled �ux symbolized as φ for onveniene.Neutron �ux is perhaps an unfortunate name sine in other disiplines �ux is a generiterm for the transport of material from one region to another. In the ase of theneutron di�usion problem the �ow of neutrons from one region to another is alledneutron urrent.The multi-group transient neutron di�usion equation is lassi�ed as a paraboliequation and is written as
1

vg

∂φg

∂t
= ▽ · Dg ▽ φg − ΣRgφg +

G∑

g′=1,,g′ 6=g

ΣSg′gφg′ + Sg (2.7)Where
g the disretized energy group #, 1 being the most energeti
D the di�usion onstant haraterizing the material interation rate

ΣR the removal ross setion
ΣSg′g sattering ross setion from group g' to g
Sg soure termThe soure term Sg is omposed of several additional terms inluding both promptneutrons whih are the result of a �ssion event and delayed neutrons whih appearwith an appreiable delay from the deay of ertain �ssion produts.The soure term an be written as
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χ the prompt �ssion spetrum

Σf the �ssion ross setion
χD the delayed neutron �ssion spetrum
λ the deay rate of the preursor group
C the delayed preursor onentration
β the relative yield of eah delayed preursor group
sg soure term independent of the �ssion proessThe transient problem an be transformed into an eigenvalue problem by settingthe derivative with respet to time, ∂φg

∂t
, equal to zero. This version is lassi�ed as anellipti problem and is written as

−▽ ·Dg ▽ φg + ΣRgφg −
G∑

g′=1,g′ 6=g

ΣSg′gφg′ =
1

k
χg

G∑

g′=1

νΣfg′φg′ (2.10)where λ = 1
k
is the eigenvalue of the system. For the steady state ase all the highermoments deay and only the �rst fundamental mode remains. Designing a reatorwhih maintains a steady state is a non-trivial task. Under long time behaviour theremay be multiple eigenpair solutions. Higher frequeny solutions to the �ux shapeoften orrespond with larger eigenvalues, and deay rapidly in time. These values of

λn are known as the time eigenvalues of the equation, sine they haraterize the timedeay. Solutions to the transient neutron di�usion equation are always dominated bysome exponential terms. Transient solutions tend to grow very rapidly or deay veryquikly.Few group di�usion equations (of 2 - 8 energy groups for thermal reators and15 - 20 for fast reators) with six preursor equations are often onsidered to be an23



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringadequate model of the neutron kinetis in a nulear reator. In order to solve for theneutron group �uxes in spae and time, the system of PDEs for the group �uxes andpreursor onentrations must be disretized in spae and time.Finite di�erene methods are the simplest and most diret approah to the solutionof any spae-time problems. The method onsists of replaing the spatial derivativein the neutron kinetis equation by the orresponding �nite di�erene approximation.The reator ore volume is partitioned into a number of sub-regions. In eah region,the material properties are spatially averaged and hene are assumed to be uniform.Either ell entered or vertex entered disretizations an be used. Cell-entereddisretizations de�ne the unknowns (group �uxes and preursor onentrations) withina typially square region whih is used as the basis of the integration volume.Neutron di�usion problems are disussed again at the end of Chapter 4 andthroughout Chapter 5. This presentation of the neutron di�usion problem omitsmany details. A rigorous derivation of the neutron di�usion equation from the trans-port equation, as well as a disussion of the delayed preursor e�ets on transients,and a variety of losed form analytial problems are presented in the lassial text byDuderstadt and Hamilton [53℄.2.2 Mathematial TehniquesThe MOOSE is implemented so that the model designer retains ontrol of a varietyof model design details. This setion will disuss some of the bakground behind themathematial tools built into the MOOSE and will also disuss some of the disretiza-tion and integration tehniques whih the MOOSE makes available to the user.
24



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering2.2.1 Iterative Spetral Solution TehniquesA few entral algorithms are presented in the following setions however the fousis plaed on a disussion of the properties of the methods and their performaneharateristis. None of these methods are implemented within the MOOSE, theMOOSE instead relies on third party implementations of linear solvers. The rationalebehind why ertain methods are preferred to others is the fous of this setion. Thetwo most important harateristis for seleting a method were whether it was ableto solve matrix forms whih orresponded with the problems foused on in the asestudy, and whether the implementation was su�iently e�ient. The implementationof these methods are desribed in [21, 140℄.Iterative solution methods are ommonly used for the solution of systems of PDEsfor a variety of reasons. Usually they have signi�antly less memory overhead thantheir diret ounter parts, and for some ases they an be very easy to implement.In situations where iterative methods are being used to solve a sequene of similarproblems the solution from the most reent problem an be used as the preonditionerfor the next problem.Systems are ategorized by general properties like symmetry, positive de�niteness,ondition number, and size. Solution methods are onstrained by available mahinememory, desired auray of alulation, available time, hardware and software pak-ages. Several solver tehniques are disussed inluding Jaobi's method, suessiveover-relaxation, onjugate gradient, bionjugant gradient, bionjugant gradient stabi-lized and Chebyshev iterations.A matrix is symmetri when AT = A , or alternatively when aij = aji ∀i, j .Symmetry is important and neessary for many of the simpler more e�ient solvers,most notably the onjugate gradient method. Symmetri matries have the additional25



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringadvantage that only half of the matrix information needs to be stored.A matrix is onsidered to be positive de�nite if xTAx ≥ 0 ∀x. The onjugategradient method attempts to minimize the value of (
x(i) − x̂

)
A

(
x(i) − x̂

), where x(i)is the ith estimate of the exat value x̂, of the equation Ax = b. The minimumis guaranteed to exist only if A is symmetri positive de�nite. The vetor x(i) isonstruted from a sequene of orthogonal residual vetors as de�ned by the onjugategradient algorithm. Conjugate gradient is e�ient with memory beause it only needsto maintain 2 vetors x(i) and r(i), the algorithm requires only the suessive updateof eah of these.An iterative method is stated most generally as
x(k+1) = Bxk + c (2.11)If the matrix B is onvergent then the method will onverge. B is a onvergentmatrix if and only if the spetral radius of B is less than 1, where the spetral radiusis de�ned as ρ (B) = max {|λi| , i = 1, ..., n} and λ1...λn are the eigenvalues of B.Sine ρ (B) ≤ ‖B‖ a straightforward way to deide if B is onvergent or not is to lookat its row-sum or olumn-sum norm and see if it is less than 1. Note that if ‖B‖ ≥ 1this does not imply ρ (B) ≥ 1, and that the B matrix may be a omplex part of ablak box algorithm and so may not be readily available.For the onjugate gradient type spetral methods the spetral ondition numberis the main measure of the rate of onvergene. The ondition number of a matrix

B is de�ned to be κ2 (B) = λmax (B) /λmin (B). The number of iterations to ahieveand error ǫ is proportional to √
κ2. Some speial ases our, for example; elliptiseond order PDEs typially give rise to oe�ient matries A with κ2 (A) = O (h−2),independent of the order of the �nite elements or di�erenes used, and of the number26



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringof spae dimensions in the problem. For linear systems derived from PDEs in 2D, theondition number is proportional to the number of unknowns.If the extremal eigenvalues of the matrix are well separated the onvergene in-reases with eah iteration. The onjugate gradient algorithm tends to eliminateomponents of the error in the diretion of eigenvetors assoiated with extremaleigenvalues �rst. After these are eliminated onjugate gradient proeeds as thoughthese eigenvalues did not exist. The onjugate gradient algorithm is a fundamentalspetral tehnique, the algorithm is presented in Appendix 1. Other methods likeGMRES (Generalized Minimal Residual) and BiCG (Bi-Conjugate Gradient) addressproblems whih require the solution of non-symmetri matries.GMRES onstruts a series of residual vetors and is guaranteed to onverge after
n steps where n, is the number of variables in the system. GMRES must retain inter-mediate alulations for eah step, so that as n grows large, the storage requirementsbeome prohibitive. The usual strategy is to restart GMRES every m steps. Duringthe restart yle all of the aumulated information is disarded and the urrent esti-mate is used as the new starting point. Until GMRES is restarted the work assoiatedwith it grows linearly with eah aumulated vetor.BiCG uses two orthogonal sequenes to deal with matries whih are not symmet-ri. If it is applied to a symmetri positive de�nite system then it will onverge at thesame rate as onjugate gradient, although it will require twie the amount of work.Sometimes BiCG onverges in an irregular way, and onvergene an in fat breakdown for some matries.Chebyshev Iteration's onvergene rate depends on the estimate of the extremaleigenvalues. If a good estimate is used, and the matrix is symmetri positive de�nite,then Chebyshev will onverge as fast as CG. If poor estimates of the eigenvalues aremade then Chebyshev Iteration an onverge very slowly or diverge in some ases.27



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringSolver Sym Positive Iterations needed Operations/ memoryDe�nite for onvergene Iteration onsumptionJaobi No Yes slow ∼ n w ∗ n (w + 3) ∗ nSOR No Yes GS/10 (w + 1) ∗ n (w + 2) ∗ nCG Yes Yes √
κ2 (w + 5) ∗ n (w + 6) ∗ nGMRES No No depends on m (w + 2 ∗ i + 2) ∗ n (w + i + 5) ∗ nBiCG No No ≥2*CG, unstable (w + 7) ∗ n (w + 10) ∗ nBiCGSTAB No No CGS, stable (2 ∗ w + 10) ∗ n (w + 10) ∗ nChebyshev It. No No CG ⇀eigen est. (w + 1) ∗ n + λest (w + 5) ∗ nTable 2.1: A Summary of Spetral Method Performane CharateristisThe number of iterations to onverge is a funtion of whih algorithm, or mathe-matial method is used to solve a system. The ost of eah iteration of that algorithmis dependent on preisely how the algorithm is implemented, (i.e. how many addi-tions/ multipliations are required). The performane of several iterative methods issummarized in Table 2.1, this information is taken from [21℄.All of the iterative methods involve vetor sums, salar-vetor produts, innerproduts, vetor-matrix produts, but no matrix matrix produts. SAXPY is anoperation where a salar vetor produt is omputed along side a vetor sum as

z = αx+ y.Memory onsumption is related to the number of intermediate vetors that themethod stores. Eah method must store the entire sparse matrix, so usually the mem-ory onsumption required to do this will dominate the total memory onsumption.Matrix storage is presented in Table 2.1 as the row width times the number of ele-ments w ∗ n. There are a variety of storage shemes for sparse matries so this �gureis given as an estimate.The linear multi-grid method [180℄ an be an extremely fast solution tehnique.Its implementation diverges quite radially from the previously desribed iterativemethods beause it requires multiple problem representations. Although not used in28



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthis thesis, it has been used very reently by [117℄, and so is desribed in Appendix 1.Multi-grid methods should not be onfused with omposite grid tehniques pre-sented in the subsequent setions. The multi-grid method is an iterative solutiontehnique whih provides exellent performane and good parallelization harater-istis for ellipti problems. In ontrast omposite grid tehniques are solely for thepurpose of building an appropriate spatial disretization for a problem. Compositegrid tehniques an be used to fous omputational resoures on a ertain segmentof the geometry, or they an allow setions of the geometry to move relative to oneanother as will be the main fous in later hapters. Composite grid tehniques arenot tied to any partiular solver, likewise multi-grid methods do not neessarily implyany partiular geometri interpretation of a problem. In priniple the two tehniquesan be ombined, although this was not attempted as part of this thesis.The GMRES method was the preferred iterative solver used in later hapters ofthis thesis for its good onvergene rate and reasonable memory onsumption. Theproblem formulations onstruted by the MOOSE are often not symmetri, so thisprevented the use of the onjugate gradient algorithm.Other TehniquesThere are a wide variety of important linear solution tehniques whih go beyond thesope of this hapter.Sparse diret methods are able to solve linear systems without resorting to iterativetehniques. Sparse diret methods have properties similar to standard dense matrixsolution tehniques like Gaussian elimination or LU deomposition while still takingadvantage of matrix representations whih do not expliitly represent all of the zerosin the system. They generate solutions in a �xed number of steps, whih in some29



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringases are more preise than their iterative ounterparts. Sparse diret methods havethe disadvantage that they tend to onsume more memory than iterative methodsand they an also be very di�ult to implement. Reent implementations of diretmethods are disussed by [10, 48℄.Parallelization of iterative tehniques is aomplished by segmenting solution ve-tors either by the solution vetor's indies, or through partitioning whih is optimizedbased on the geometri referenes that eah entry makes. As already mentioned theJaobi method requires many thousands of iterations to ahieve the same aurayon a well onditioned matrix as the onjugate gradient method, but eah iteration isvery heap, and parallelization of the Jaobi method is trivial, where as paralleliza-tion of the onjugate gradient method is not trivial. The seletion riteria whih isused to hoose an algorithm for a single CPU problem may not be the same as theriteria used to hoose a parallel implementation. Parallel linear solution tools andtehniques are presented brie�y in [21, 49℄, with spei� referene to neutron di�usionby [7, 14, 15, 61, 120, 142, 146, 147, 155℄.2.2.2 Eigenvalue Calulation TehniquesThe standard eigenvalue problem [17, 78℄ is formulated as
Ax = λx (2.12)A non-trivial solution for λ and x is sought where λ is a salar, x ∈ Cn and

A ∈ Cn×n. Problems whih involve omplex numbers have not been addressed by theMOOSE, while they are inluded within the omplete domain of eigenvalue problemsthe MOOSE was developed with a more restrited set of target problems in mind.The general eigenvalue problem also inludes a seond square matrix B whih has30



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthe same dimensions as A and is formulated as
Ax = λBx (2.13)This problem is often solved by reformulating it in standard form. If B is non-singular then the problem an be rewritten as B−1Ax = λx. If B is singular, whih isrelevant to the nulear di�usion problem, then slightly more omplex reformulationsare neessary. If the problems are large and sparse then some of the issues of onernto linear problem solvers are also relevant to the eigenvalue problem.Many methods have been proposed to ompute eigenvalues and eigenvetors forlarge spares matries. Methods like QR iteration are not appropriate for large sparsematries beause they are based on modifying the matrix by ertain similarity trans-formations whih destroy sparsity [79℄. Many eigenvalue appliations only require afew seleted eigenvalues and not the entire spetrum.Methods for sparse eigenproblems usually obtain the solution from the informationgenerated by the appliation of the matrix to various vetors. Matries are onlyinvolved in matrix-vetor produts. This not only preserves sparsity but also allowsthe solution of problem in whih matries are not available expliitly.The maximum eigenvalue an be estimated in a variety of ways, the power methodomputes a series of approximations of eigenvetors and eigenvalues and is de�nediteratively as
x̂ = Ax(k−1) (2.14)

x(k) = x̂(k)/max
(
x̂

(k)
i

) (2.15)31
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x(0) is usually hosen with random entries, the algorithm is repeated until x(k) on-verges. As k → ∞ max

(
x̂

(k)
i

)
→ λmax, and x(k) →the assoiated eigenvetor. Thisonvergene takes plae at a rate proportional to λmax/λmin. If the power method isused for a few iterations to generate a �rst approximation to x(k) then by using theRayleigh quotient, de�ned as

Rq =
xTAx

xTx
(2.16)an estimate of the eigenvalue assoiated with x(k) an be omputed. An iterativemethod for �nding the eigenvalue, eigenvetor pair, whih onverges faster than thepower method an be onstruted based on the Rayleigh quotient.Subspae iteration is a generalization of the power method in whih the matrix isapplied to a set of m vetors simultaneously, and orthogonality is enfored expliitlyto avoid the onvergene of all the vetors toward the same eigenvetor. A projetiontehnique is often used to ompute approximations to the eigenpairs of matrix A,extrating them from a given low dimensional subspae on whih the problem isprojeted. The projetion sheme is ommon to many other methods. The Krylovmethods use a projetion onto a Krylov subspae.The most basi algorithms Krylov subspae method for �nding eigenvalues is theLanzos method. The Lanzos algorithm needs to aess the matrix only in the form ofmatrix-vetor operation, similar to the linear spetral solution methods. The Lanzosalgorithm is presented in Appendix 1.The Arnoldi algorithm [79, 80, 81℄ an be used for non-symmetri problems. Itomputes approximations of invariant subspaes from Krylov subspaes of inreasingsize. During the ourse of the algorithm vetors are aumulated whih will tendto onsume large amounts of memory. These algorithms are often restarted when a32



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmaximum is reahed. The Krylov-Shur [152℄ algorithm represents an improvementon the Arnoldi algorithm whih uses a more re�ned restarting strategy.A variety of numerial details must be addressed when implementing Krylov sub-spae algorithms. A sheme must be hosen for onstruting a basis. The tehniqueseleted will have an impat on round-o� errors. Loking already onverge eigenvaluesan onsiderably redue the ost of an algorithm.Convergene problems an arise in the presene of lustered eigenvalues. Aeler-ation tehniques onsist of omputing eigenpairs of a transformed problem and thenreovering the solution of the original problem. The most ommonly used spetraltransformation is alled the shift-and-invert. The value of the shift, σ, is hosen sothat the eigenvalues of interest are well separated in the transformed spetrum. Theatual problem solved is
(A− σB)−1Bx = θx (2.17)This transformation is e�etive for �nding eigenvalues near σ sine the eigenvalues

θ of the operator that are largest in magnitude orrespond to the eigenvalues λ of theoriginal problem that are losest to the shift σ in absolute value. This transformationis also e�etive in that it an be used to avoid inverting a singular matrix. Therelationship between the eigenvalues of both problems is
θ = 1/ (λ− σ) (2.18)A linear system of equations must be solved whenever a matrix inversion appearsin the algorithm, sine diretly inverting the matrix would destroy the sparsity of theproblem. That is to say that when a produt of the form33
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y = A−1x (2.19)appears rather than inverting A and multiplying this result by x what is done insteadis the problem is reformulated as
Ay = x (2.20)where x is known then y an be solved for using any of the already desribed methods.This is an important detail sine the ost of �nding an eigenvalue for the generaleigenvalue problem may be dominated by the ost of the algorithm whih solvesthe inverted system. Either an iterative sheme or a diret sheme may be used toompute this result. Using a spetral transformation like the shift and invert willtend to redue the number of steps in the eigenvalue alulation routine, although theost is quite high sine eah step will require a matrix inversion aomplished via thesolution of a linear system. SLEP handles this detail automatially, this is part ofwhat makes it so attrative.2.2.3 Transient Integration TehniquesThe MOOSE provides the neessary building bloks to assemble well understood andommonly used integration methods [70, 76, 172℄. This setion will present a briefoverview of the theory behind integrating PDEs over time. Several methods will bepresented inluding Euler's method, the trapezoid method, Runge-Kutta's method,multi-step methods and multi-value methods.Two basi problems present themselves. The integration tehnique must be hosen,and the size of the time step must be hosen. Higher order integration methodsmay be more preise than lower order methods, but eah step will typially be more34



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringexpensive to ompute. A sequene of small steps may produe a reasonably preisesolution with any integration method, but if the problem is omplex enough the totalnumber of steps required for a simple method may make the alulation impossible.Expliit methods, while attrative for their simpliity of implementation, may exhibitstability problems whih an be avoided by their more expensive to ompute impliitversions.Sti� systems are those whih are haraterized by tightly oupled proesses whihrepresent both very fast and very slow moving phenomena. Solving sti� systemspresents additional omplexities beause if one is fored to hoose step size based onthe fastest moving terms in the system an overall solution may be di�ult to derive.Some speial onsiderations for the handling of sti� systems will be presented.
y

t

h

Figure 2.1: Integrating a basi ODEFor simpliity this setion will fous on ODEs. The priniples of integrating PDEsare similar, and in many ases the same formulations an be used. As illustratedin Figure 2.1 a funtion y is integrated with respet to t using disrete steps h. Aninitial point, y0 is usually known, and the derivatives of y are also known, they maybe dependent on both y and t.In later hapters these tehniques are used by the MOOSE framework to solveseveral transient problems. In Chapter 4, the framework is tested using both Euler's35



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringexpliit method and the semi-impliit trapezoid method. In Chapter 5 a third ordermulti-value method using sti�y-stable oe�ients is used as part of the major asestudy. All the tehniques disussed in this setion an be used to speify solution PDEsfor the MOOSE. Impliit methods require the appliation of one of the linear solversdesribed in the previous setion to handle the large sets of simultaneous equationswhih often result from de�ning a system in terms of an impliit formulation. Animpliit solution requires a rather intimate understanding of the problem at handand so preludes the use of many pre-existing solution libraries. To develop a basiappreiation of these issues, a brief summary of integration tehniques is presented.Euler's Expliit Method
yn+1 = yn + h · dy

dt

∣∣∣∣
n

(2.21)Euler's method is a �rst order method. It is simple to program, numerially unsta-ble, and an violate the Courant Friedrih Lewy (CFL) ondition. The CFL onditionis relevant in multidimensional simulations and relates the speed of propagation ofthe numeri solution in spae with its speed of propagation in time. Euler's methodsare usually disussed for pedagogial reasons they are rarely used in pratie.Impliit Euler
yn+1 = yn + h · dy

dt

∣∣∣∣
n+1

(2.22)The method is impliit sine it requires dy
dt

∣∣
n+1

to ompute yn+1. Sine knowledgeof dy
dt

∣∣
n+1

in priniple requires knowing yn+1 �nding a solution for an impliit methodwill tend to be omplex and require the use of a �xed point solver or some othertehnique for solving simultaneous equations. Impliit formulas are always muh36



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmore expensive to ompute than their expliit ounterparts. The impliit version ofEuler's method is ompletely numerially stable whih means that it is possible totake large steps with the method and ompute solutions that will not grow withoutbound.For PDEs, impliit methods an be more stable than expliit methods for reasonsrelated to their dimensionality. Consider the illustration in �gure 2.2. The point
φ(xj, tk) when omputed expliitly under a �nite di�erene sheme an only be underthe in�uene of the larger points in the triangle, those whih preede it in time. Ifthe phenomena being studied propagates through spae faster than the simulation isallowed to evolve in time then the CFL ondition may be broken and the simulationmay beome unstable.

φ (x ,t )
j k

x

t

Figure 2.2: Shemati Illustration of the Limits of Expliit MethodsThe CFL ondition an be written formally as a relationship between the speedof the propagating phenomena in spae c, the spae between grid points ∆x, and thesize of the time step h as11Taken from [76℄. 37



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering
h ≤ △x√

c
(2.23)where it should be noted that stability does not neessarily imply auray. Forpratial purposes a step size many times smaller than that required by the CFL maybe needed to ompute a meaningful solution to the problem. While the impliit versionof Euler's method guarantees stability, stability alone is not a su�ient ondition foran aurate solution. Improved auray an be ahieved through the use of higherorder integration methods.Trapezoid

yn+1 = yn + h ·
(
dy

dt

∣∣∣∣
n

+
dy

dt

∣∣∣∣
n+1

)
/2 (2.24)The trapezoid method is a seond order semi-impliit method. It is also sometimesalled the Crank Niholson method. It requires dy

dt

∣∣
n+1

to ompute yn+1. Beause itis a semi-impliit method it annot take steps as large as the impliit Euler method,however sine it is seond order aurate the steps that it does take are muh morepreise.Runge-KuttaThe Runge-Kutta methods use derivatives omputed at a variety of positions. Whilepreviously it was onvenient to write dy
dt

∣∣
n
to represent the �rst derivative of y om-puted at the position (tn, yn), for Runge-Kutta methods the derivative dy

dt

∣∣
(tn,yn)

iswritten as f(tn, yn) so that omplex expressions an be used for t and for y.
k0 = f(tn, yn)38
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k1 = f(tn + h/2, yn +

h

2
k0)

k2 = f(tn + h/2, yn +
h

2
k1)

k3 = f(tn + h, yn + hk2)

yn+1 = yn +
h

6
(k0 + 2k1 + 2k2 + k3) (2.25)Runge-Kutta methods have a variety of formulations. The above representationis a ommon implementation, it is fourth order aurate and expliit so eah step isvery inexpensive to ompute. A drawbak of this method is that eah step requiresseveral alulations for dy

dt
at points de�ned by the partiular implementation. Runge-Kutta methods are appropriate when an expression exists for the alulation of the�rst derivative whih an be evaluated independently of the solution being solved for.Impliit Runge-KuttaThe impliit Runge-Kutta methods also have multiple possible de�nitions. Here ageneral form for a two stage impliit Runge-Kutta is de�ned in terms of several on-stants, α, β, and γ. The details of this method are disussed by [70℄.

k1 = f (tn + α1h, yn + hβ11k1 + hβ12k2)39
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k2 = f (tn + αnh, yn + hβ21k1 + hβ22k2)

yn+1 = yn + γ1hk1 + γ2hk2 (2.26)Impliit Runge-Kutta has better stability harateristis than expliit Runge-Kutta, although Impliit Runge-Kutta methods are used less frequently. Like theother impliit methods it is more expensive to ompute than its expliit version, andlike the expliit Runge-Kutta methods it requires multiple dy
dt
evaluations.Multi-StepMulti-step methods are often expressed using a slightly di�erent notation than theprevious methods, where the �rst derivative of y with respet to t at a point k, i.e.

dy
dt

∣∣
k
is written simply as y′k. Time steps are usually stritly regimented. A multi-stepmethod normally omputes all derivatives from previously known positions in timeand spae, indiated by the subsripts.

yk+1 = yk +
h

24

(
55y′k − 59y′k−1 + 37y′k−2 − 9y′k−3

) (2.27)
yk+1 = yk +

h

24

(
9y′k+1 + 19y′k − 5y′k−1 + y′k−2

) (2.28)Multi-step methods have a variety of implementations muh like Runge-Kuttamethods, both expliit and impliit methods of various orders an be de�ned. Eahpartiular de�nition has its own stability properties and auray harateristis. The40



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtrapezoid method an be onsidered a seond order multi-step method. The aboveimplementation is a fourth order preditor orretor method. Equation 2.27 providesan initial estimate for yk+1, equation 2.28 provides a orretion. Multi-step methodswork by aumulating a history of �rst derivatives and using non-linear extrapolationmethods to estimate the next step that they take. Changing step size with multi-stepmethods an be di�ult, and multi-step methods also require some start-up methodto prime their history. If a system starts in steady state then the start-up methodan be as simple as initializing the derivative history with zeros. Sometimes methodswhih do not use a history, like the Runge-Kutta methods an be used to initialize amulti-step method.Multi-Value MethodsMulti-value methods require the maintenane of several variables as part of theiralulation. A vetor of derivatives of several higher orders is maintained for eahstep, alled yk, whih is omputed from a temporary vetor of derivatives, alled ŷ,and a onstant α, also evaluated at eah step. In addition the method itself is de�nedby a transformation matrix and vetor, alled B and r respetively. Details of themethod, and various hoies for B and r are disussed by [70℄.
yk =
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B =





1 1 1 1
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ŷk+1 = Byk

α = h(f(tk+1, yk+1) − ŷk+1)

r =





3/8

1

3/4

1/6





yk+1 = ŷk+1 + αr (2.29)Multi-value methods [70℄ are omputationally equivalent to multi-step methodsalthough they use a somewhat di�erent tehnique to represent the problem. Insteadof maintaining a history of individual points, a sequene of derivatives is kept at theurrent point. The advantage that this has over a multi-step method is that it isrelatively easy to hange step sizes. The preeding example is a ommon formulationof a 4th order multi-step integration method. The hoie of the vetor r will have an42



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringimpat on the auray and stability of the method. As mentioned in the openingpart of this disussion, some integration problems are lassi�ed as sti� and are di�ultto solve. Several vetor hoies for r are listed in Table 2.2, these are taken from[70℄. De�ning the vetor r from the entries in the �rst table will yield a multi-valuemethod with reasonable stability properties, and a high degree of preision. De�ning
r based on the elements listed in the seond table provides a method whih tradespreision for stability. While slightly more steps will be required with the sti�ystable oe�ients, the integration proedure is muh more likely to onverge to aorret result espeially if the problem su�ers from a mixture of fast and slow movingomponents. The results derived in Chapter 5 use the multi-value integration methodwith a third order integration sheme with onstants taken from the sti�y stabletable.degree r[1℄ r[2℄ r[3℄ r[4℄ r[5℄3 5/12 1 1/24 3/8 1 3/4 1/65 251/720 1 11/12 1/3 1/24Multi-Value Coe�ientsdegree r[1℄ r[2℄ r[3℄ r[4℄ r[5℄3 2/3 1 1/34 6/11 1 6/11 1/115 25/50 1 35/50 10/50 1/50Sti�y Stable Multi-Value Coe�ientsTable 2.2: Coe�ients for Multi-Value Methods Vetor rStep size seletion an be aomplished by a variety of tehniques. There arespeial methods for seleting step size for both the multi-step and multi-value methodsbased on areful analysis of the properties of those methods. A general tehniquewhih applies to all integration methods is step doubling. A step is omputed in two43



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringways, �rst the step is taken in the normal way for the method. A seond estimateof the new value is omputed by taking two steps eah one half the size of the steptaken in the �rst estimate. The two results are ompared, if their di�erene is above aertain threshold then the step is rejeted, the step size is redued, and the proedureis repeated. If the di�erene between the two estimates is below a ertain thresholdthen the step size is aepted, and the step size an be inreased.2.3 Modeling Engineering GeometriesPhysis simulations tend to fall into two broad ategories in terms of their mappingbetween the physial world and the simulated spae of the omputer. The �rst om-mon mapping is based on linked omponents. In this simulation design omponentsare onneted in an abstrat fashion, and the preise position of eah simulation ele-ment is not as important as how it is onneted to its neighbours and the behaviourthat it models. Eletrial iruits are normally simulated through a omponent baseddesign where the behaviour of the overall iruit is determined by the onnetivity ofindividual omponents rather than their preise physial position on a iruit board.The Berkley SPICE simulator is an example of suh a simulator. Fluid �ow modelswhih model a pipe network are also often represented in a omponent wise fashionwhere the relative position of the end points of the pipe are of onern, but the atualloation of the pipe in spae and its overall shape are unimportant. For example see[119℄.The seond ommon mapping between simulation elements and physial geome-tries is a one to one mapping, where the simulation spae is disretized and representedby some sort of regular pattern of points whih an be alulated on a omputer. Thisthesis has foused its e�orts on this style of disretization. Several meshing tehniques44



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringare disussed in the following setion.2.3.1 Mesh TehniquesMesh elements an take a variety of forms, the simplest two dimensional mesh isa Cartesian square grid. Meshes with regular non-square elements are also possible,hexagonal and triangular elements are also ommon. Often the spaing of grid lines ina Cartesian mesh is adjusted so that there are more mesh lines in an area of interestto the simulator, typially this requires only a relatively simple adjustment of theomputational model to aount for the unequal spaing. If a simple regular meshan be applied to a problem this is always preferable. Regular onformal meshesfor whih eah mesh vertex is onneted only to other mesh verties in a simplepreditable pattern are easy to analyze mathematially and are also easy to programon a omputer.If omputer resoures are not limited, or if a problem is not very omplex, a simplegrid an provide a very e�etive solution to a simulation problem. Unfortunately thisis not usually the ase. For many problems the simulation features of interest mayonly our in a small loalized region within the problem domain and using a simplegrid to mesh the entire domain an be very wasteful of omputational resoures. Forother problems it may be neessary to ompute approximations to urved surfaeswhih do not onform to simple geometri subdivisions. The irregular Cartesian gridpitured in Figure 2.3 an be used to fous in on ertain parts of a simulation butthis method also tends to reate additional areas of fous whih are not neessarily ofinterest to the modeler.There are a variety of solutions to problems that need either loal grid fous, orgrid shapes that are well �tted to the exat shape of a problem. Several examples45
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(b) hexagonal

(d) triangular

(a) Cartesian

(c) irregular CartesianFigure 2.3: Simple Grid Typesare illustrated in Figure 2.4, see [157, 158℄ for a omprehensive disussion. One ofthe most ommonly applied solutions in �uid mehanis is the use of unstruturedgrids. An unstrutured grid uses a olletion of polygons to �ll in a region, usuallytriangles. The polygons need not be of the same size or in the same orientation.Unstrutured grids (Figure 2.4a) are very good at representing arbitrary urves andunusual geometries and have beome the preferred griding mode for �uid dynamisproblems. Unstrutured grids are more ompliated to implement and have largermemory requirements than strutured grids, so they are not neessarily the best hoiefor all problems.Strutured grids need not be simple Cartesian grids, they are often bent to �tsurfaes and an provide exellent approximations to urved shapes for ertain ap-pliations, see Figure 2.4b. In suh situations urved meshes are often assembled to-46



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering
(a) unstructured (b) boundary fitted structured

(c) overlaid multi−block or chimera (d) patched multi−block Figure 2.4: General Grid Typesgether to onstrut multi-blok meshes. The literature on multi-blok meshes pointsout that multi-blok meshes are also good for modeling moving omponents [157℄.The MOOSE uses geometrially Cartesian grids and uses individual grids to modelseparate omponents, urved grids are not implemented. The MOOSE's grids arestrutured, but need not be onformal. A non-onformal mesh allows for verties toonnet with grid edges, i.e. in Figure 2.4 examples a) and b) are onformal, but )and d) are non-onformal.Two major shemes exist for handling the boundaries between onneted grids.Overlaid multi-blok grids, (sometimes alled Chimera grids, see Figure 2.4) useinterpolation to ommuniate between individual grid strutures. A ertain degree ofoverlap is required to ensure good ommuniation between the grids. In the pathedgrid sheme (see Figure 2.4d), grids are nested exatly inside of eah other, usually47



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringa �nite volume interpretation of the mesh is used where variables are onsidered toexist at ell enters rather than mesh verties.The MOOSE uses a pathed multi-blok grid system to model motion. As dis-ussed in the next setion there are several omputational reasons for why this parti-ular sheme was hosen versus an overlapping grid. The analysis of pathed meshesis more diret, and provides a variety of simplifying mehanisms whih failitate theorret linking of grids, as will be illustrated in Chapter 3.2.3.2 Composite Grid MethodsThere is muh debate in the literature [154℄ whih disusses the orretness of usinginterpolation methods to link overlapping meshes. Conservation is a generi physialproperty; it often refers to onservation of mass, or onservation of energy. Poorlydesigned simulations will fail to maintain this general property. In the ase of pathedmeshes and overlapping meshes it is often the ase that the meshing tehnique is re-sponsible for some small soure or sink of energy or material whih leads to overallinauraies in the simulation. Some papers [24, 25, 130, 131℄ argue that using in-terpolation of any order will lead to errors indued by the failure to onserve the�ow aross mesh borders and that mesh overlap should be avoided altogether. Otherpapers argue that under ertain irumstanes onneting meshes with higher orderinterpolation methods an be su�iently preise [38, 39, 121℄, up to the order of errorindued by the mesh size. Still other papers [98, 168℄ disuss the idea of avoidingthe problem altogether by linking strutured mesh elements by unstrutured partialmeshes or lipping overlapping setions of meshes to restruture the geometry of theproblem. See also [26, 41, 115, 127, 151, 156, 174℄ for additional bakground on thisdisussion 48



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringMost of this disussion has taken plae in the ontext of �uid mehanis simula-tions where the goal is usually to model appliations of the Naiver Stoke's equationsaround a smoothly urving struture. The main motivation in this problem area forusing multiple meshes to build a smooth boundary that represents the surfae of some-thing like an airplane wing. Building suh ontours from a olletion of struturedmeshes rather than a single strutured mesh or an unstrutured mesh has a variety ofimplementation advantages whih prompted researh in this area. Many authors whowork in the nulear engineering area reognize the potential bene�ts for using eithermoving mesh tehniques, or adaptive meshes [176, 181, 182℄. To date, few (if any),neutron di�usion projets have been built using either adaptive geometri methods,or linked meshes.Linked strutured meshes were hosen over an unstrutured mesh for several appli-ation spei� reasons related to the modeling of neutron di�usion. Neutron di�usionphysis breaks down at the resolution of the neutron's mean free path, or the dis-tane that a neutron an travel without olliding with anything. This distane rangesbetween a few m, and about 10 m depending on the harateristis of the reatorand the model. Di�usion physis makes anisotropi sattering assumptions, so notonly do neutrons travel large distanes without ollisions, but when they do ollidethe diretion of their sattering is only modeled in a very rough way. Reator oredesigns are also often very simple, using either a ylindrial or a retangular prism forthe overall geometry. Given the geometri approximations employed by neutron dif-fusion physis there is no real advantage to be obtained by preisely modeling reatorgeometry with an unstrutured mesh.The paper by [169℄ presents an example of an unstrutured mesh solved with a�nite element method used to model a reator. This author uses a transport model tosimulate a ylindrial ore rather than a di�usion model so in this ase the more om-49



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringplex mesh is somewhat justi�ed. Reall that transport models do not make anisotropisattering assumptions and preisely trak the motion of neutrons and their intera-tions with material interfaes, the ost is usually a muh more omplex model.An unstrutured mesh does not neessarily provide all the solutions needed bya moving mesh. If a single mesh is onstruted for a given geometry and pointsare translated only limited motion an be modeled. This style of motion may besu�ient to model the �exing of a bridge or vibrations in an airplane wing, but asdisussed by [77℄, for problems whih involve large deformations, the mesh an easilybeome entangled. Even in ases where neither twisting nor tangling of the mesh areat issue �nite element methods have ertain limitations. The elements are limited inthe shapes that they an have, how big they an be, and how they an be onneted,whih may plae limitations on omponent motion.Despite these problems with mesh deformation, re-meshing the problem for newon�gurations is possible. There are also other novel strategies suh as de�ning om-ponents within strutured regions and then using an unstrutured mesh to onnetthose regions, see [98℄.The strategy employed by the MOOSE, of using moving strutured pathed meshes,should be understood as one possible approah, but not the only possible approah.Using moving strutured pathed meshes was preferred partly beause it is aknowl-edged in the nulear literature as a possible approah by [176℄, and most losely followsthe existing disussion of nulear simulations. Strutured meshes are also simple todeal with, in the third hapter where non-onformal mesh onstrution issues areaddressed along side arbitrary physis, the advantage of limiting the mesh design tosimple linked Cartesian grids beomes more obvious.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering2.3.3 Nodal Methods and Transient SimulationsNulear Engineering transient models are often implemented using a ompromise be-tween standard mesh methods and linked omponents. Coarse mesh and nodal meth-ods represent a ompromise between expliitly representing the simulation domain ona �ne mesh whih is apable of aurately modeling the geometry of a reator ore,and a ompletely abstrat model whih links regions whih use non-linear modelsto approximate the behaviour of a large setion of the reator ore. These methodsprovide ertain advantages over standard disretization methods, but at the ost ofrather omplex implementation.Coarse mesh methods [153, 109℄ are motivated by the fat that in some instanesa reator may be adequately desribed by a model onsisting of homogeneous regionsthat are relatively large. A region is de�ned as large when it is greater than thedi�usion length of a neutron, typially on the order of more than 10 m. While aoarse mesh may be adequate to desribe the geometry, a �nite di�erene methodwill require a relatively �ne mesh to maintain auray. Coarse mesh methods areable to use mesh sizes whih are muh larger than �nite di�erene methods beausethey use higher order approximations to the spatial variations of the unknowns withina mesh ell. The rational is that although the omputational e�ort per mesh ell isinreased, the redution in the number of mesh ells results in an overall redution inthe amount of work required to solve the problem.Like oarse mesh methods, nodal methods utilize relatively large omputationalmesh ell to solve multi-dimensional reator problems using signi�antly less om-puter resoures than the �ne-mesh �nite di�erene method. Early nodal methodsrequired a variety of shemes to deal with fae-averaged partial urrents and thenode averaged �uxes. Coupling parameters for a node are de�ned as the ratios of51



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthe interfae integrated out-going partial urrents to the node-averaged �ux. Thehomogenized parameters are usually omputed by weighting the spatially dependentross setions with the �ux solution obtained in an assembly alulation with zero neturrent boundary onditions. These parameters are omputed using a referene �nemesh alulation. While these methods work well in situations in whih the onditionsanalyzed using the nodal method losely resemble the referene ondition at whihthe oe�ients were omputed, they often breakdown when the di�erene betweenthe analyzed and referene onditions beomes large.Nodal methods work in part by solving a non-linear one dimensional approxi-mation to the �ux in the X, Y and Z diretions for eah ell. This is less workthat solving a fully three dimensional approximation to the entire ell. If the �uxis to be reonstruted for the entire ell higher order polynomial tehniques an beused. Speial leakage terms are normally inluded to deal with neutron �ux whih isunaounted for near the far boundaries of the ell.Transverse integrated nodal methods assume that nodes are either truly uniformthroughout their entire volume, or that they may be adequately represented usingnode-averaged values of the ross setions and di�usion oe�ients. This assumptionof uniformity of intra-nodal omposition does not apply to most reator alulationsthat employ assembly or quarter-assembly sized nodes. These issues are addressedby advaned nodal homogenization shemes that yield equivalent di�usion theoryparameters that allow transverse integrated nodal odes to ompute node-averagedquantities that agree losely with the results of �ne mesh alulations in whih theheterogeneity within the node is expliitly represented.The rod usping problem [20, 95, 102, 116℄ results when a naive approximation forthe motion of either a ontrol rod or fuel assembly is used as part of a oarse meshsolution. The naive approximation models a large ell whih is partially oupied52



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringby the leading or trailing tip of a moving assembly by taking a weighted average ofthe ross setion onstants that represent the fully roded ell and the unrodded ell.When reativity is plotted versus assembly insertion distane the naive approximationtypially results in a reativity urve with a series of usps whih fall in betweenpositions where the assembly is aligned with the mesh. The size of the usps arerelated to the preise problem being studied, but at least for problems whih useoarse meshes the deviations from the orret reativity are onsiderable and notaeptable.Many tehniques exist for the treatment of the rod usping problem in the ontextof nodal solutions inluding the approximate �ux weighting method, the analytial�ux weighting with disontinuity fator methods, the bi-linear weighting method andthe equivalent-node method. All of these methods provide satisfatory approximationfor the motion of assemblies with the exeption of the volume weighting method [176℄.Di�ulties with Nodal MethodsNodal methods are very ompliated to derive, some variations require areful ali-bration and are only valid for a narrow simulation range, and often require the om-putation of a referene solution. Early nodal methods have been ritiized for beinginonsistent with the neutron di�usion equations. The modern nodal methods, alsoknown as the transverse-integrated nodal methods, are onsistent but add more om-plexity so that they are often restrited to two energy groups. The error of nodaldisretization is di�ult to analyze hene the benhmarking of nodal odes still re-lies on a �nite di�erene ounterpart. The unusual hoie of nodal unknowns, thenode-averaged and fae-averaged quantities, makes the resulting disretized systeminompatible with fast iterative methods. It is usually very di�ult to aelerate the53



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringonvergene of solution of a nodal disretized system of tens of thousands of equations.While �ux values an be easily extrated from a �nite di�erene simulation the nodalsolution is for a node-averaged quantity whih requires dehomogenization to obtainthe reation rate distribution within the node [117℄.2.4 Problem Solving EnvironmentsA Problem Solving Environment (PSE) automates the proess of model onstrutionby reating a reusable tool for a domain of problems. The lassial simulation designand onstrution proess is uni�ed in a single reusable tool that enapsulates expertisefrom a variety of domains. A PSE ollets together several solution methods andmodels addressing issues suh as appropriate software reuse, intrinsi model validation,and intelligent algorithm seletion.In the last 15 years the idea of a PSE has penetrated into a variety of engineer-ing disiplines. The basi explanation for this reent surge of interest lies with thedevelopment of graphial user interfaes, improvements in overall hardware speed, aswell as the standardization of sienti� software tools. One early disussion of PSEsappears in an artile by Gallopolous, Houstie and Rie [66℄, where the history of theidea of an all-purpose sienti� solution tool going bak as far as 1960 is summarized.In the same artile the report provided by the 1991 workshop on PSEs sponsoredby the National Siene Foundation is given. Sine this artile, hundreds of artileshave appeared whih diretly use the term PSE. With the exeption of the text by[88℄, there are few disussions whih attempt to ategorize or summarize the bodyof literature on PSEs. While the idea of a PSE is itself intuitive, few projets omelose to fully atualizing the idea. The fully �edged PSE must somehow be all thingsto all people, so while on the one hand the idea is relatively easy to appreiate, its54



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringrealization is still largely elusive.The �nal setion of this hapter presents a olletion of PSEs roughly ategorizedas
• Speial Purpose PSEs
• Multi-Physis PSEs
• Networked Sienti� PSEs
• Collaborative PSEsFor eah ategory several representatives are disussed. These ategories serve topaint a rough piture of the urrent state of the art with respet to PSEs dividingtheir designs into four broad groups. Given the wide variety of PSE projets, a propertaxonomy and analysis of properties and trends ould easily �ll an entire text. Manyprojets and trends have been left undisussed.2.4.1 Speial Purpose PSEsMany PSE systems limit their design to a spei� range of physial phenomena.These tools are often built by speialists in the area who are attempting to generalizesome of their modeling tehniques. Presented here are several di�erent examples ofdomain spei� PSEs inluding GEANT4, WBCSim, Entero and ICEPIC. Eah e�ortis driven by a relatively restrited domain. Also of relevane but not disussed in thissetion are tools desribed by [11, 92, 93, 74, 77, 118, 137℄.The tools desribed in this setion are PSEs in the sense that they address a wellunderstood but limited range of problems and provide a �exible framework whih isappliable to only a selet set of related phenomena. In some senses these may be the55



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmost e�etive tools desribed in this hapter sine they are driven by the e�orts ofdomain experts to ollet together a set of losely related tools, and make those toolsinter-operate in a very pratial way for the bene�t of their peers. In ontrast someof the very general tools desribed in subsequent setions attempt to address issuesfrom a broad genera of related problems. It is arguable that inreasing the generiityof a tool redues its e�etiveness in all of the areas that tool attempts to address.GEANT4GEANT4 [3, 12, 60, 91, 110, 141, 159, 179℄ is disussed in some detail here beause itrepresents a PSE whih is very broad in sope and inludes many aspets of NulearEngineering and Eletrial Engineering. GEANT4 is also very well doumented inthe literature by dozens of researh publiations. The work for GEANT4 is based ontwo studies done independently at CERN and KEK in 1993. Both groups sought toinvestigate how modern omputing tehniques ould be applied to improve what waso�ered in the existing GEANT3 program. A proposal was submitted to the CERNdiretor to build a new program built using objet oriented tehnology, the projetresulted in a worldwide ollaboration of 100 sientists and engineers drawn from morethan 10 experiments in Europe, Russia, Japan, Canada and the United States. Whilegeographially distributed software development and large-sale objet-oriented sys-tems are no longer a novelty, the authors onsider the GEANT4 Collaboration, interms of the size and sope of the ode and the number of ontributors, to representone of the largest and most ambitious projets of this kind. Shortly after the releaseof the �rst version in 1999, the GEANT4 Collaboration was established to ontinuethe development and re�nement of the toolkit and to provide maintenane and usersupport. The Collaboration Board a Tehnial Steering Board and several working56



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringgroups manage the groups' resoures and monitor the agreed responsibilities of thea�liates. GEANT4 is freely available for download and runs on multiple platforms.GEANT4 OverviewGEANT4 is a toolkit for simulating the passage of partiles through matter. It in-ludes a omplete range of funtionality inluding traking, geometry, and physismodels. The physis proesses o�ered over a omprehensive range, inluding eletro-magneti, hadroni and optial proesses, a large set of long-lived partiles, materialsand elements over a wide energy range starting from 250 eV and extending in othersto the TeV energy range. It has been used in appliations in partile physis, nulearphysis, aelerator design, spae engineering and medial physis.Modern partile and nulear physis experiments pose enormous hallenges in thereation of omplex yet robust software frameworks and appliations. Of partiularimportane is the ever-inreasing demand for large-sale, aurate and omprehensivesimulations of the partile detetors used in these experiments. Similar onsiderationsarise in other disiplines, suh as: radiation physis, spae siene, nulear mediineand many other areas where partile interations in matter play a role.GEANT4 ats as a repository that inorporates a large part of all that is knownabout partile interations; moreover it ontinues to be re�ned, expanded and devel-oped. Objet-oriented methods have allowed the e�etive management of omplexityand the limitation of dependenies by the de�nition of a uniform interfae and om-mon organizational priniples for all physis models.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringGEANT4 DesignGEANT4's design was driven by the software needs of modern experiments. A typialsoftware model ontains a omponents-event generator, detetor simulation, as well asreonstrution and analysis methods that an be used separately or in ombinations.Simulation models should be modular and �exible, its physial models should betransparent and open to user validation. It should allow the user to understand,ustomize and extend it in all domains. Its modular arhiteture should enable theuser to pik only those omponents whih are neessary.The key domains of the simulation of the passage of partiles through matter are:
• geometry and materials
• partile interations in matter
• traking management
• digitisation and hit management
• event and trak management
• visualisation and visualisation framework
• user interfaeThese domains naturally lead to the reation of lass ategories with oherent in-terfaes and for eah ategory, a orresponding working group with a well de�nedresponsibility. GEANT4 is desribed as a toolkit by its authors beause this termimplies that a user may assemble a program at ompile time from omponents hosenfrom the kit or supplied by the user.GEANT4 allows the user to reate a geometri model with a large number of om-ponents of di�erent shapes and materials. The user an de�ne sensor elements that58



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringreord information. GEANT4 also provides a omprehensive set of physis proessesto model the behaviour of partiles. The user an interat with the toolkit throughone of several di�erent graphial user interfaes. Both the geometry and the partiletraks an be visualised through a variety of graphis systems. The user interfaeis su�iently �exible that its implementation an be ombined with that of othersimulation systems.Openness was an important design goal for the authors. An objet oriented imple-mentation allowed for a lear and ustomisable orrespondene between partiles andproesses and o�ers a hoie of models for eah proess. Cross setion omputationsas well as the parametrization and interpolation of databases are all ompletely ex-posed. The physis is implemented through 17 major ategories of lasses. Categoriesinlude
• global: overing the system of units onstants and random number handling
• geometry: overing volumes for detetor desription
• interoms: allows GEANT4 ode to interat with the user interfae and otherplugins
• trak: ontains lasses for traks and steps
• proesses: proesses make use of traks and ontains models of interation
• transportation: handles the transport of partiles in the geometry model
• event: manages system events
• visualization: plotting and rendering of omputed data
• persisteny: heking pointing of simulated data59
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• user-interfae: interative graphial widgets and buttons presented to the userThe event ategory provides an abstrat interfae to external physis event genera-tors, this isolation allows a GEANT4 based simulation program to not be dependenton spei� hoies for physis generators and also to be independent of the spei�solution.The geometry ategory o�ers the ability to desribe a geometri struture andpropagate partiles e�iently through it. Some onepts have been borrowed fromprevious implementations but improvements, re�nements and advanes have beenmade in key areas. GEANT4 handles solids with simple shapes, like retilinear boxes,trapezoids, spherial and ylindrial setions or shells and are stored through Con-strutive Solid Geometry (CSG). Solids may also be ombined by Boolean operations,intersetion, union and subtration.The traking ategory steers the invoation of proesses. Eah partile is movedstep by step with a tolerane that permits signi�ant optimising of exeution but thatpreserves the required traking preision. All physis proesses assoiated with thepartile are de�ned by a step size. For a partile at rest this is a time rather than alength. The smallest of either the maximum allowed step as de�ned by the user, orthe steps proposed by all of the attahed proesses is hosen.A variety of di�erent approahes are present for the various types of physis.Partile deay is straightforwardly alulated from the mean life of the partile. Theeletromagneti physis lasses handle the interations of leptons, photons, hadronsand ions. The pakage is organised as a set of lass ategories:
• standard: handling basi proesses for eletron, positron, photon and hadroninterations 60
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• low energy: providing alternative models extended down to lower energies thanthe standard ategory
• muons: for handling muon interations
• optial: providing spei� ode for optial photons
• X-rays: providing spei� ode for X-ray physis
• utils: olleting together utility lasses used by the other ategoriesClasses for partiles and materials implement failities for desribing the physialproperties that are neessary for the simulation of partile-matter interations. Thepartiles lass desribes basi properties like mass, harge, et. and also must enodethe proesses to whih a partile is sensitive. The materials ategory re�ets whatexists in nature: materials are made of a single element or a mixture of elements.Various user interfae tools like Motive, Tk/tl, JAVA and others have been used toimplement the ommand apturer. Various groups whih partiipate in the GEANT4Collaboration have ontributed their own front-ends to the ommand system. Cur-rently available implementations are as follows:
• bath: non-interative on�guration �le driven
• tsh-like: a ommand shell like implementation for interative sessions
• GAG: a lient/server adaptive GUI re�eting GEANT4 states
• OPACS widget manager implementationGEANT4 visualisation an render detetor geometry, partile trajetories, trakingsteps, hits, and text labels. The visualization driver an diretly aess graphis61



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringlibraries, ommuniate with independent proesses through either pipes or sokets, oran simply write an intermediate �le for a separate viewer.There are various analysis systems that generate histograms, analyse event datastatistially. GEANT4 uses the AIDA abstrat interfae, there are several examplesof data analysis systems ompatible with AIDA inluding JAS, Lizard and OpenSi-entist.EnteroThe long-term goal for the Entero [68℄ environment is to researh and develop amodule-oriented, multi-physis, mixed-�delity system simulation environment for en-gineers to enable rapid system performane analysis and design optimization. Majordesign goals for the environment inlude providing a systems view for analysis, amodule-oriented view, enabling modules of di�erent physis types to be oupled to-gether, providing mixed �delity modules and enabling optimization and unertaintyquanti�ation studies. Coupling di�erent physis types allow an engineer to modeleletrial iruit in a thermal or radiation environment and monitor its performane.Adjusting the �delity of the model allows the designing engineer to replae a oarser�nite element mesh with a �ner one, or a linear model with a non-linear model.One fous for the Entero environment is modeling systems ontaining eletrialiruits that are exposed to �res. Eletrial iruits an be embedded in eah module,but not onneted between modules. Eletrial ativity is alulated using the SPICEiruit simulator and iruits are spei�ed through standard SPICE netlist �les. Theoupling between the zero-dimensional thermal models and the iruit models is oneway. It is omputed using the zero-dimensional blak body thermal modules andthen this temperature is imposed on any iruit embedded in the module, any heat62



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringgenerated by the iruit is negleted. In the ase where higher dimensional modelsare used to ompute the heat generated by an objet, an average over the omponentis omputed whih redues it to a zero dimensional �gure before it is ommuniated.ICEPIC Prototyping EnvironmentImproved onurrent eletromagneti partile in ell (ICEPIC) [30, 125℄ is being devel-oped at the Air Fore Researh Laboratory. Of partiular interest to the United StatesDepartment of Defense is the design of direted energy devies that generate high-power mirowave (HPM) pulses. The Air Fore Researh Laboratory is working tobring about a paradigm shift in the design, analysis and onstrution of HPM soures.This shift involves harnessing high performane omputing and using it throughoutthe researh proess.ICEPIC is a relativisti 3-D Cartesian variable mesh eletromagneti parallel PICode apable of simulating a wide variety of eletromagneti problems inluding highpower mirowave devies. HPMs are generated from the resonant interation of in-tense relativisti eletron beams with eletromagneti avities. The interation trans-forms eletron kineti energy into eletromagneti energy. Maxwell's equations areused to analyze these systems. ICEPIC is apable of managing millions of omputa-tional ells ontaining billions of modeled partiles. Test ases run on networks with100s of workstations. ICEPIC has suessfully simulated various real-world HPM de-vies, suh as the magnetially insulated line osillator (MILO) and the relativistiklystron osillator (RKO).Having usable, reliable, high performane physis simulation has hanged howthe Air Fore Researh Laboratory engineer their designs. In the past, ode run-ners, pratial experimentalists and ode developers all worked with di�erent sets of63



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringassumptions. The old parallel odes were di�ult enough to use that too many unre-alisti simpli�ations were made by the persons exeuting the odes in order to assurethat simulations ran to ompletion in reasonable periods of time. The umulativee�et of simpli�ations by eah group meant that e�etively di�erent devies werebeing studied. Tools like ICEPIC, have simpli�ed the exeution of high performaneproblems to the point where realisti details like full geometry, multiple sharp edges,and nonzero vauums an be onsidered.2.4.2 Multi-Physis PSEsIn sharp ontrast to speial purpose PSEs, multi-physis PSEs attempt to address avery broad sope of problem domains whih link various physial phenomena. Thesetools usually identify a modeling tehnique whih is appliable to a wide variety ofproblem domains. Many tools base their approah on a partiular solution teh-nique, like FEMLAB whih applies the �nite element method in ombination withunstrutured meshes against a wide array of problem types. Problem types in FEM-LAB are atalogued within a sequene of templates and presented to the user inmenu format through a verbose interfae. SCINAPSE and CTADEL are aademiprojets whih both employ ideas from omputer algebra tehniques allowing the userto speify solution methodologies through their own speially developed sriptinglanguages. Although CTADEL's authors foused there researh e�orts on weathergeneration it is inluded in this ategory beause it embodies many of the samepriniples of �exible model desription as well as ode generation. Also of inter-est and appliability to a broad set of problems but not disussed in this setion are[32, 33, 37, 83, 86, 94, 100, 173℄While eah of these tools is able to address a broad array of problem types, and64



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringalthough eah is desribed in generi terms to some extent, it should be kept in mindthese tools rely on a limited set of problem harateristis. No tool an be perfetlygeneri and at the same time, simple to use.CTADELCTADEL [160, 161, 163℄ is a programming environment apable of transforming high-level PDE problem spei�ations into e�ient odes for serial, vetor, and parallelomputer arhitetures using omputing-ost heuristis and arhiteture-spei� sym-boli transformations. Software synthesis is the automati translation of a problem,de�ned at a high level of abstration, into exeutable ode, by stepwise re�nement.Code generation is distint from ompilation in that a typial ompiler simply per-forms a fairly literal translation from a high language to a lower language, whereasa ode generator typially makes more inferenes, and builds exeutable ode whihmight ontain loops, subroutines, and onditionals whih are not expliitly spelledout in the spei�ation.CTADEL implements a translation mehanism with inherent vetor and ma-trix semantis to transform vetor equations into salar equations. The translationmehanism follows standard notational onventions for PDE operators and adopts aMATLAB-like programming style for symboli matrix and vetor operations. Thebridge between a model with ontinuous derivatives and integrals and the numer-ial shemes with stenil operations and quadratures is laid by employing operatoroverloading tehniques. CTADEL's system inorporates a symboli and algebrai sim-pli�er to transform problem spei�ations into intermediate representations and forapplying simpli�ation and optimization on the intermediate problem representationsand ode. 65



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe original version of CTADEL used semi-Eulerian methods. Semi-Lagrangianshemes, in ontrast, an take muh larger time steps. Sine the CTADEL softwareis based on ode generation it was possible to extend its alulation methods withadditional interpolation shemes inluding linear and quadrati methods.FEMLABFEMLAB [42℄ is a general tool for solving PDEs that arise in a variety of disiplinesinluding heat transfer, �uid �ow, eletromagnetis, strutural mehanis and manyother areas. Models an be onstruted in 1-D, 2-D or 3-D. FEMLAB provides adetailed graphial user interfae whih failitates model onstrution as well as outputrendering. FEMLAB allows several physial disiplines to be ombined together. Thisforms FEMLAB's de�nition of multi-physis.FEMLAB allows users to enter PDEs diretly and does not hard ode equationsfor partiular physial regimes. Diret entry of PDEs provides muh of FEMLAB'sgenerality and �exibility. FEMLAB's standard apabilities an be extended throughsript programming. Simulations an be paused and hek-pointed at any stage ina alulation, alulation methods an be hanged in the midst of a omputation.FEMLAB is built on top of MATLAB so FEMLAB simulations an be easily inor-porated with other MATLAB tools. FEMLAB employs ode generation by onvertingthe user's graphial input into MATLAB ode. Exported ode an then be modi�edor speially tweeked by the user.FEMLAB solves numerially elliptial, paraboli and hyperboli nonlinear di�eren-tial equations using the �nite element method. FEMLAB uses the Galerkin priniplefor nodal �nite elements for transformation of di�erential equations into equivalentsystems of algebrai equations. 66



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringFEMLAB has been aggressively marketed to the aademi ommunity as the �rstsoftware tool to solve nontrivial di�erential equations in a fast and aurate fashion.FEMLAB is disussed by [1, 56, 104, 112, 148, 162, 175℄.FEMLAB's generality does not satisfy everyone's needs. Afeyan writes [1℄ thatFEMLAB does not provide a way to ontrol step size whih would be appropriate tothe partiular equation the author is onsidering. Afeyan also writes that FEMLABprevents ertain kinds of nonlinear oe�ients from being de�ned whih are importantto optial semiondutors. Komarov writes [104℄ that for ertain waveguide struturesFEMLAB omits boundary onditions for some ases whih would prevent it from beingable to solve ertain mirowave heating problems. The reservations reported by bothauthors are fairly domain spei�, and do not seem to be fundamental design issueswith FEMLAB but rather appliation spei� problems.SCINAPSESiNapse is a ode generating PSE for solving sienti� omputing problems withoutlow level programming [6, 5℄. SiNapse has generated odes that solve the transientversion of Maxwell's equations in 3D dispersive, anisotropi media, the Blak Sholesequations for valuation of multiple asset derivative seurities in omputational �nane,nonlinear, multidimensional, multispeises reation di�usion equations for hemialand nulear appliations and time domain solution of visoelastodynami equationsin 3D anisotropi media.The odes that SiNapse generates an inlude features suh as general oordi-nate transformations and grid generators, various linear solvers and preonditioners,higher-order di�erening tehniques, automati interpolation of equation parametersfrom multidimensional tabular input data, jump onditions in both spae and time67



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringdimensions, free boundaries, and imposition of solution onstraints suh as positivity.The goal is to generate odes in whih the �nite-di�erene PDE solution beomes theforward engine for solving multiparameter inverse problems via nonlinear optimiza-tion. Problem spei�ations in SiNapse typially range from several lines to a half apage, and the synthesized odes an be thousands of lines long. SiNapse is writtenin Mathematia ode, and is about 120,000 lines longSiNapse's high level problem spei�ation language supports natural desriptionsof geometry, mathematis and desired interfaes. The knowledge base inludes oor-dinate free onstrutions (suh as the Laplaian), equations (suh as Navier-Stokesor Blak-Sholes), disretization rules (suh as Crank Niholson), time stepping al-gorithms, solvers (suh as preonditioned onjugate gradient and SOR). The systemhooses appropriate data strutures and generates a pseudo-ode solution that it thentranslated into the desired target language. Mathematial ode is optimized alongthe way.SiNapse automatially re�nes a spei�ation in a stepwise fashion from the mostabstrat level though several more onrete levels, �nally reating a numerial ode.After eah stage SiNapse heks the problem state for onsisteny appropriate tothat level of abstration.The ode synthesis system is built on top of a general purpose knowledge basedsystem written in Mathematia. The system inludes an integrated objet system, rulesystem and planning system. SiNapse objets expliitly represent ommon mathe-matial onstruts suh as a geometri region or part thereof. Objets also representprogramming onstruts suh as a linear solver, a subroutine or a program variable.SiNapse internal representation of numerial programs is independent of targetlanguage. In this abstrat representation ontext dependent global optimizations areeasy to implement. SiNapse generates odes in C and FORTRAN 77.68



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering2.4.3 Networked Sienti� PSEsMany PSEs take advantage of networked arhitetures for the purpose of exploitingeither parallelism in the target problem or distribution of the omputing failities. Insome ases part of the omputational problem is �guring out how to distribute theproblem aross omputing resoures so it an be solved e�etively. In other ases,part of the problem is the seletion of whih resoure to use. A PSE may ontain adata base of networked omputers only some of whih are able to solve the problemat hand. This will be true in situations where the problem type submitted by theuser requires software that is only available on a spei� platform. Some PSEs areable to make judgements about whih solvers, or whih hardware platforms are bestsuited to solving a problem. Projets not disussed in this setion but also of interestare [11, 45, 47, 51, 65, 64, 67, 74, 77, 85, 124℄.Not all problems are amenable to distribution, and not all problems an takeadvantage of parallelism. For those that an, the onstantly hanging hardware andsoftware base presents a omplex set of on�guration problems to the user. Whilethe automation of distribution as part of a PSE may not be a mature siene, itis a neessary one if parallelism is to be e�etively exploited by everyday users. Aolletion of frameworks are presented in this setion all of whih address issues relatedto networked problem solving.The SAMRAI FrameworkThe SAMRAI [171℄ (Strutured Adaptive Mesh Re�nement Appliation Infrastru-ture) Framework is a parallel data ommuniations framework for strutured adaptivemesh re�nement multi-physis appliations. Strutured adaptive mesh re�nement isan e�etive tehnique for fousing omputational resoures in numerial simulations69



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringof PDEs that span a range of disparate length and timesales. AMR is used to dy-namially inrease grid resolution loally to resolve important �ne-sale features inthe solution. The goal is to ahieve a more e�ient omputation. SAMR is a parti-ular variety of adaptive mesh re�nement where the loally re�ned grid is de�ned withstrutured grid omponents.SAMRAI was developed to support a wide range of parallel multi-physis prob-lems. The di�ulties assoiated with implementing appliations using SAMR designoften makes the implementation prohibitive. Priniple problems solved by SAMRAIinlude the handling of numerial methods for loally-re�ned grids and the manage-ment of data exhange. Data exhange patterns must be modi�ed eah time the gridhanges.Multi-physis appliation often ouple di�erent algorithmi omponents eah ofwhih provides a distint part of an overall sheme. Users an easily desribe datatransfer phase of a omputation by speifying ommuniation operations to be per-formed, suh operations inlude opying, temporal and spatial interpolation, and theappliation of user de�ned physial boundary onditions.The SAMRAI framework represents a layer of automation and ommuniationneessary for reduing the overall omplexity of developing parallel appliation odeswhih take advantage of the adaptive mesh re�nement.NetSolveThe NetSolve Grid Computing system [13, 36℄ provides users with aess to remoteomputational hardware and software resoures. Grid omputing desribes a on-eptual fabri of omputing resoures analogous to the eletrial power grid, whihideally uniformly and seamlessly hannels omputational servies to lients who plug70



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringin to the grid. NetSolve's �rst motivation was to address the ease-of-use, portabilityand availability of optimized software libraries for high performane omputing. Thesystem uses a lient/agent/server model.Three major omponents are employed by NetSolve: the NetSolve agent, informa-tion servie and resoure sheduler, the NetSolve server, a networked daemon provid-ing omputational hardware and software resoures, and the NetSolve lient librarieswhih allow users to instrument their appliation ode with alls for remote om-putational servies. NetSolve provides a funtional programming model based onRPC in whih the lient is used to pass NetSolve objets to and from servies asinputs and outputs. NetSolve supports objets like, MATRIX, a 2 dimensional array,SPARSEMATRIX, a two dimensional array stored in ompressed row storage format,VECTOR, a one dimensional array and other similar strutures. The NETSOLVElient supports both synhronous and asynhronous alls. NETSOLVE urrently sup-ports APIs for MATLAB and MATHEMATICA environments. NetSolve enhanesthese environments by expanding the numerial funtions available to the user andallowing for inreased performane by exeuting ode remotely on more e�ient ma-hines.NETSOLVE has inorporated a large number of solver algorithms from a vari-ety of pakages like BLAS, LAPACK, SaLAPACK, ItPak, PETS, AZTEC, MA28,SuperLU and ARPACK. NETSOLVE input routines an analyze user input and in-telligently selet algorithms depending on input data harateristis.Net Pellpak PSE ServerPellpak [84℄ is a PSE for PDEs, Net Pellpak [36, 114℄ the software's Web-basedounterpart, lets users solve omplex PDE problems with a graphial user interfae, a71



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringstateful text based protool, and Net Pellpak servers running on mahines anywhereon the network. The main design objetive was to provide the Pellpak GUI to remoteusers in an e�etive seure and e�ient manner.There are several possible design senarios for a web based PSE. The �rst approahis to make the whole PSE available over the web, where the web based GUI drives allaspets of the PSE. This is usually only feasible over a high speed LAN onnetion.The seond senario uses a networked software bus to reated virtual libraries by dis-tributing the library to multiple servie providers. Communiations tehnologies likeremote proedure alls or Corba may be utilized to enable the network onnetions.Net Pellpak utilizes these two fundamental design proedures. One the user hasseleted a solution path through interations with Net Pellpak, either library soft-ware modules are downloaded from a repository and used loally, or the problem issent to a omputation server with an implementation of the algorithm. Net Pellpakautomatially deides for the user whih approah is most appropriate depending onthe users problem desription. Net Pellpak library interfaes follow a standard sothat bodies of mathematial software an be developed and maintained for a widevariety of omputer systems.2.4.4 Collaborative PSEsOne ommon trend among PSE designers is to build PSEs with the purpose of enablingmultiple users to ollaborate on a given projet. Collaborative PSEs go beyond simplydistributing a PSE aross a network as desribed in the previous setion. An attemptis made to onstrut an environment for the ooperative solution of a problem fora broad group of individuals who may be physially separated. Collaborative PSEsmake the work of sharing engineering design and simulation results between developers72



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmore manageable. Networking tehnologies are normally employed, muh use is madeof the Internet and world wide web. Some projets fous on sharing simulation results,other projets fous on the sharing of omputational resoures. Collaborative PSEsfous on the proesses by whih sientists interat, and provide tools for bridging vastdistanes that often separate speialists who wish to work on the same problems. Thistopi is also disussed by [23, 55, 62, 164℄.PNNL's design for CPSEAt Pai� Northwest National Laboratory (PNNL) the design of ollaborative PSEsfor sienti� omputing in various domains is being studied [96℄. PNNL's projet seeksto haraterize the nature of sienti� problem solving and searhes for innovative waysto improve it. The ultimate goal is to allow sientists and engineers to enhane theirollaborative problem solving apabilities through the improved and integrated usageof resoures and tools.Cognitive researhers desribe the at of reasoning or problem solving as a higherorder skill that enompasses spei� proesses and abilities. Problem solving oursin the ontext of the ativities that sientists perform and the knowledge that theypossess. Providing aess to omputational resoures is not enough, rather engineersneed support for how they utilize domain knowledge.PNNL's projet team met with 5 di�erent groups of sientists and engineers on-sisting of omputational hemists, regional limate modelers, nulear magneti reso-nane experimentalists, automotive engineers and �uid dynamis modelers. Throughan interview proess, several ommon problem solving needs were determined.1. Easy and e�etive aess to omputational resoures. Resoures should be rep-resented in a way that is omprehensible and intuitive to the domain engineer.73



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering2. Experimental design and exeution support. Better tools are needed it assist inde�ning, managing, exeuting analyzing interpreting and sharing experiments.3. The ability of sientists to solve problems hinge on their knowledge of domainonepts and theories. By making knowledge expliit and onrete, sientistsmay be able to better maintain and evolve this knowledge.4. The experimental proess is highly repetitive, tools are needed whih supporta repetitive yle while allowing the modi�ation of initial onditions and om-parison of generated output.Domain sientists and engineers do not naturally think of omputational resouresas appliations, omputers and �les but rather as models, alulations and spatialand temporal data. PSEs need to be designed to promote the appropriate level ofabstration suh that sientists may utilize these resoures in a form onsistent withtheir spei� domain onepts and views.Sienti� problem solving is inherently a ollaborative e�ort among researhers asthey share information, models, tools resoures and results. More than just sharingspei� researh artifats, sienti� problem solving also involves the sharing of one'sexpertise and experiene. As sientists run omputational models, they apply a vastamount of proedural and domain knowledge. Sientists may have valuable experienein running partiular omputational models. The ability to apture this kind ofknowledge and share it with others is the goal of the ollaborative PSE. Sienti�ollaboration does not our in isolation but is driven by the funtions of the sienti�researh.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringDLR's VirtualLabThe goal of DLR's VirtualLab [58℄ is to provide Web aess for eletromagneti satter-ing and radiative transfer simulation appliations developed at DLR's remote sensingtehnology institute. All sienti� omponents provide oarsely uni�ed Web baseduser interfaes supporting data input, exeution steering, and output. Doumenta-tion is integrated through Web hyper-links providing ontext sensitive on-line help.Users an retrieve omponents based on searh keywords mathed against meta-datathat are part of the omponents doumentation.Eah user has a personal area where all data resulting from work with the VL arestored along with the seletion of omponents the user is working with, and all ex-perimental simulation data results. Eah experiment started by the user launhes thetask manager whih onstruts a job ontrol �le invoking the neessary on�gurationof the omponents. This system supervises the VirtualLab luster's ompute nodesand shedules job exeution using a load balaning strategy.The web interfae is tailored towards interative ommand line appliations. Theseappliations operate in bath mode but an aept various struturally di�erent sortsof input data sets. The VirtualLab o�ers a mehanism for abstratly desribing allthe relevant details of the appliations input behaviour so that the VL an provide aresponsive dynami user interfae.The virtual laboratory is used to exeute a variety of appliations of intereststo DLR. The fous is on sattering odes whih are used to study light satteringoptis on various lasses of nonspherial partiles suh as irregular ie partiles andChebyshev-like partiles. The individual appliations inlude Mieshka, Pmieshka,CYL and QCACP.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCatus Computational CollaboratoryThe Catus Collaboratory toolkit for solving PDEs was originally designed to sim-ulate Einstein's equations for studying blak holes, gravitational waves and neutronstars, and has more reently been adapted for use in bioinformatis and atmospherisienes [8, 9, 31℄. The system also provides sientists without a knowledge of parallelomputing or mesh re�nement with a simple framework for solving any system ofPDEs on many parallel omputer systems.Catus appliations are built from a meta ode whih desribes how appliationsin ommon omputational languages, suh as C, C++, FORTRAN 77, and FOR-TRAN 90 interweave. Parallelism and portability are ahieved by hiding MPI, theI/O subsystem and the alling interfae under a simple abstration API. Preproessormaros implemented through make �les and Perl sripts expand preproessor marosto onstrut the arguments of the �esh and additional arguments de�ned by eahthorn. Catus is thus a meta-ode, the user spei�es a desired ode and the systemautomatially generates the ode ontaining only those routines requested.Catus takes advantage of emerging grid tehnologies. Although distributed re-soures o�er many advantages there are downsides as well. The enormous terabytedata sets produed by the Catus simulations tax bandwidth limits. Even with thebest available international networking resoures, downloading the data from the sim-ulation run may take longer than it took to run the simulation itself. These problemshave motivated many remote monitoring and steering e�orts.The ASC Portal is intended to deliver a ollaborative simulation managementframework for generi appliations, with the development driven by a partiular om-munity of astrophysiists, numerial relativists and omputational siene researhersthat use and develop their odes with Catus. This ommunity makes up a virtual76



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringorganization denoted as the ASC-VO. The Collaboratory enables a wide spetrum ofresearhers in the ommunity to ooperate on ode development and use. This has thee�et to drastially inrease sienti� produtivity by fostering ollaboration, uttingdown redundant e�orts by di�erent researh groups, and maximizing the bene�t ofmassively parallel omputing to the ommunity.2.5 DisussionThis hapter has presented a broad array of topis and perspetives. Fundamentalphysial models and solution tehniques are as important to the development of thisthesis topi as a bird's eye perspetive on some of the most ambitious simulationprojets developed to date. One of the di�ulties in designing this thesis topi wasthe e�ort required in balaning a spei� problem domain whih enompasses a fun-damental set of questions against a suitably �exible methodology whih might yieldsome general insights and perspetives on the state of the art in engineering sienetoday. The proposition of studying a generi modeling system, as outlined in theoriginal thesis proposal, is quikly rebuked by the obvious ounter suggestion thatmany suh projets already exist. Yet, what should be lear from the brief surveyof projets presented in this hapter is that no matter how generi and �exible theylaim to be in eah ase there is some fundamental perspetive that drives the de-sign of any given PSE. New projets ontinue to explore various avenues by applyingthemes ommon to already existing PSEs in their implementations to novel designissues and problem types. While the problem types and solution tehniques presentedin the �rst part of this hapter an be addressed or taken advantage of by many ofthe tools desribed in the setion on PSEs, eah of the PSEs desribed supplies itsown partiular perspetive. 77



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe topis disussed in this hapter supply the neessary bakground and motiva-tion for subsequent hapters. To the best of our knowledge moving mesh frameworkshave not been studied in the ontext of modeling fuel assembly and ontrol rod mo-tion. PSE examples disussed in setion 2.4.1 and setion 2.4.2 have provided overalldesign motivation. The �exibility of projets like SCINAPSE and CTADEL and theiruse of omputer algebra systems as part of their model de�nitions have motivatedertain aspets of the MOOSE design. The papers disussed in setion 2.3.2 omelosest to addressing the issues related to moving meshes. The Overture projet andother papers by the same authors whih modeled �uid mehanis problems usingoverlapping grids provided many insights as to how the MOOSE's grid onnetionalgorithms should be de�ned. The algorithms disussed in the reviewed literature onlinked meshes referred spei�ally to hyperboli �uid mehanis problems, so thesetehniques an not be applied diretly. However, as will be disussed in the next hap-ter, they provide the basi motivation for the MOOSE's mesh linking algorithms.Many of the tehniques presented in this hapter are not standard pratie innulear engineering, and annot be diretly applied. Nodal methods, disussed insetion 2.3.3, are the standard tehniques urrently used to model moving fuel assem-blies. Although the authors who disuss nodal methods reognize the possibility ofusing moving meshes as an alternate strategy for modeling motion, to our knowledge,no attempt to do so has been undertaken. One author [176℄ ritiises moving meshesas being both too ompliated to implement, and if implemented too in�exible.To address �exibility and omplexity of implementation, the MOOSE moving meshis built upon a general omputer algebra system able to implement the neutron di�u-sion equation disussed in setion 2.1.3 under any of the impliit integration shemesdisussed in setion 2.2.3. Not only are the MOOSE methods mathematially expres-sive, but in order to solve real world problems high performane sparse linear and78



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringeigenvalue solution tehniques disussed in setions 2.2.1 and 2.2.2 are taken advan-tage of. The MOOSE framework employs a ode generation system whih is ableto bridge the gaps between abstrat problem representations and high performanenumerial solvers. The ode generation mehanisms, assoiated solver libraries, andmesh linking rules are disussed in the next hapter.
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Chapter 3
Implementation
3.1 IntrodutionA framework is a reusable design of all or part of a software system desribed by a setof abstrat lasses and the way instanes of those lasses ollaborate; this presentationof the MOOSE highlights abstrat features typial of Problem Solving Environmentsand lays out a oneptual road map for subsequent work. For the purpose of testingand illustration ertain elements of the MOOSE framework have been developed. Thishapter will present some features of the prototype's implementation. The entire odebase for the MOOSE is quite large: at over 45,000 lines of original omputer ode(900 pages) it annot be presented in its entirety in this thesis.The MOOSE framework is broad enough to apture a variety of physial phe-nomena in the modeling of steady state, and transient �nite di�erene models. Thefous has been on ellipti and paraboli problems whih an be represented on anon-onformal pathed Cartesian mesh whih permits motion in two dimensions. Asa general framework there is ertainly room for expansion into other ategories ofphysial problems. 80



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe MOOSE framework supports the following priniple omponents:
• User Interfae
• Graphial output
• Mesh Constrution Algorithms
• Symboli Problem Representation
• Interfaes to State of the Art Linear and Eigenvalue SolversThe MOOSE prototype has employed a variety of advaned implementation teh-niques:
• Mix of implementation languages, inluding C, C++, MAPLE and varioussripts
• Code generation
• Symboli ProessingThe prototype implementation has foused on translating the user supplied symbolirepresentation of a problem into an e�ient matrix generation program. The ma-trix generator, reated by the MOOSE, rapidly builds a olletion of sparse matriesand vetors using standard data strutures whih are ompatible with various highperformane numerial libraries.For the purposes of writing a thesis several limitations were imposed on the de-velopment of the MOOSE to keep the projet manageable. The user interfae whihwas developed is quite simple. The MOOSE framework may be suitable for a varietyof problem domains but only reator physis problems are examined in detail in sub-sequent hapters. Geometry in the MOOSE is limited to retangular two dimensionalmeshes and problems whih model motion in vertial or horizontal diretions.81



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering3.2 Model DesignThis setion presents the oneptual breakdown of physial models used by the MOOSEfrom both a terminologial and relational standpoint. At the same time the followingset of terminology is generi enough that it an be applied to other problems as willbe disussed in hapter 4.Simulations are onstruted from a olletion of individual ells. A ell is thebasi unit of the MOOSE's simulation. A ell depends on the de�nition of three otherpriniple strutures:
• A set of variables
• A set of onstants
• A physial linear equation whih relates the variables and onstantsThe set of variables an be de�ned by the user and it inludes whatever the user isinterested in modeling. Typial ell struture variables for a nulear simulation mightinlude:
• Temperatures
• Rate of Flow
• Flux Density
• Preursor Density
• Fuel Burn-up

82



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringVariables an be represented as vetors. In the ase of �ux density subsripts anrepresent various energy levels, although preisely how this representation is aom-plished is left to the model designer. Zero, one or two subsripts are supported bythe MOOSE for any ell variable.A ell also has assoiated with it a set of onstants. Constants are assumed to havesome spatial variation in the represented artifat. For example, there is no advantageto assoiating the speed of light with a ell. Suh universal onstants an be spei�edindependently of the ell de�nition if they are to be uniform throughout the simulatedgeometry.Eah ell also has assoiated with it at least one equation, whih typially will bea partial di�erential equation represented in �nite di�erene form. There is no limiton the number of equations that an be represented in a ell. Spatial referenes arelimited to ell neighbours and are handled by speial operators whih are supplied bythe MOOSE for �nite di�erene approximations to �rst and seond derivatives. Usersmay de�ne initial onditions for time integration problems, or boundary onditions ofany type for steady state problems. The MOOSE an be used to solve linear problemsof the form of Ax = b, standard eigenvalue problems Ax = kx or general eigenvalueproblems Ax = kBx.Maps are geometri olletions of ells that speify their relative position of eahell within a map. The MOOSE only supports Cartesian maps, but allows mapde�nitions to be nested and repeated under ertain irumstanes. This allows a userto de�ne a geometrially ompliated struture, and then repeat that struture in theontext of a higher level map.Motion is ahieved by the MOOSE through the relative motion of maps. AMOOSE simulation an build a sequene of interdependent solutions. Eah step inthe sequene an involve the translation of a map or rede�nition of a ell. Simulation83



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringsteps an refer to eah other as determined by de�nitions imposed by the user.3.3 MOOSE FrameworkThis setion presents the basi elements of the MOOSE's framework desribes howeah element onnets with its neighbour. Setion 3.4 and setion 3.5 will disuss inmore detail some of the pratial problems enountered during the onstrution ofthe prototype. Some of the details presented in this setion are a neessary onse-quene of fundamental design hoies, for example, the systems of interest are alwaysrepresented by sparse matries so only sparse numerial libraries are disussed. Oth-ers design details were a matter a hoie, in some ases with the goal of minimizingimplementation e�ort, for example the redued and simpli�ed text interfae.3.3.1 Framework OverviewThe MOOSE is a reusable framework for the onstrution of programs that an modelvarious simulation senarios involving moving omponents. As a framework it presentsa olletion of abstrat lasses whih an be onretized by the user. The MOOSEsupplies the user with a olletion of run time libraries to link their simulation against,some of whih are external mathematial libraries, others are MOOSE appliationspei�. In addition to supplying the user with libraries the MOOSE also suppliesthe user with several exeutable programs for simulation on�guration �le editing andode generation. The major elements of a MOOSE simulation are pitured in Figure3.1.The user interfae disussed in setion 3.3.2 provides the main on�guration por-tal to the MOOSE. The user needs to supply ell de�nitions, map de�nitions as wellas a simple C program that direts the exeution of the simulation. Eah of these84
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Figure 3.1: MOOSE Framework Overviewelements is organized through the user interfae. The matrix generator is built froma olletion of MAPLE sripts. The matrix generator reads on�guration �les whihare generated by the user interfae. The matrix generator is responsible for extratingthe partial di�erential equation de�nitions from those �les and building a C programapable of interfaing with the solvers upon whih the MOOSE is based. A matrixgeneration funtion is required for eah data struture type and eah partial di�eren-tial equation set. Maps whih share PDE and data struture types will use the samematrix generation funtion to build their partial representation of the sparse matrix.Multiple PDE de�nitions are possible, as well as multiple data struture de�nitions,so one simulation model may require many matrix generation funtions.Eah MOOSE map is de�ned as a C lass whih inherits its major funtions froma parent lass de�ned as part of the MOOSE libraries. Eah map sublass ontainssome spei� funtions whih are partiular to the data strutures represented by the85



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringsublass. The map layout is stored in the sublass funtions. The generi funtionswhih an be applied to any map lass are de�ned as part of the map base lass.The MOOSE libraries provide user level aess to both the mathematial librariesas well as simpli�ed interfaes to the MOOSE data strutures. The MOOSE librariesalso provide an interfae between the matrix generator and the external libraries.Additional details whih desribe the MOOSE's mathematial library interfae arepresented in setion 3.4.1.The MOOSE libraries give the user simpli�ed aess to eah map. Maps anbe identi�ed either by name (for example �grid_map�), or by oordinate position.While a variety of automati graphial output options exist as part of the MOOSEpakage as disussed in setion 3.3.4, the user an also extrat individual �oatingpoint numbers from the simulated mesh or spei� eigenvalues. Aess funtionswhih request vetor minimums and maximums are also available as well as funtionsfor manipulating spei� mesh elements as desribed in setion 3.3.3. In prinipleany result generated during the solution proess an be extrated from the MOOSE'sfundamental data strutures. The matries, vetors, or any solution vetor value maybe extrated. Using the MOOSE data aess routines puts vetor values in ontextand interpolates between values if neessary.3.3.2 User InterfaeDeveloping a robust and well designed interfae is a omplex task and was not thefous of this thesis. However, in the spirit of a PSE development projet it was feltthat at least a very simple prototype interfae was neessary.The MOOSE de�nes various input parameters through the use of a olletion ofon�guration �les. In priniple a MOOSE simulation only needs a text editor to set86
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Figure 3.2: Cell Editorup its various omponents.For example ells are de�ned by a simple struture �le whih looks like this:rs_ell MOD ss_13_pdef mphy {"default_mp."} default_el;The MOOSE ode generator interprets this delaration and reads it as a sequeneof �elds. The �rst �eld rs_ell identi�es this as a ell delaration, the seond �eldnotes the materials struture to be used, the third �eld notes the property de�nition,the quoted name within the parenthesis ontains the �le name whih the MOOSEwill use to de�ne the partial di�erential equations, and �nally the name of the ell isgiven in the last �eld.The prototype for the MOOSE inludes a ell struture editor whih allows theuser to enter eah of these �elds with a little guidane. For example the ell editor willprovide a list of names of valid material strutures or property de�nition strutureson request. 87
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Figure 3.3: Map EditorMaps are de�ned by text �les. The grid map is understood to be the top levelmap in any simulation, muh like the main() funtion of a C program. Sine maps arehierarhial in nature only the lowest level maps are de�ned in terms of basi ells.The prototype MOOSE map editor renders the on�guration �le in a naturallooking way. Eah individual map is assigned a olor to help distinguish it from itsneighbours. Submap names are so they are learly identi�ed. The editing sessionshown in Figure 3.3 orresponds to the already presented grid_map struture. Thesimulation being edited deomposes the geometri problem into a sequene of adjaentvertial strips. Eah map shown in the editor's window has a ellular de�nition, whihmust also be de�ned in a separate window. Eah vertial strip represents a di�erentpart of the simulation.Every MOOSE simulation requires a short ode segment. The user supplied odewhih aompanies a MOOSE simulation an speify a variety of preise geometridetails at run time. For example, if the exat dimensions or position of the simula-88



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtion omponents annot be reasonably represented by the user interfae they an beadjusted during model exeution.The prototype user interfae inludes 6 main menu with various submenus head-ings:
• File� submenus: Open Projet, Close Projet, Delete �le/output, Reover DeletedFile, Reload libraries, Diretory Editor, Set Projet Read Only, Quit, FileHelp
• Edit� submenus: Edit File, Edit Map, Edit Cell, Edit Struture, Edit Materials,Edit Physis, Edit C soure, Edit Font, Edit Help
• View� submenus: Compilation Warnings/Errors, Con�guration Errors, Map De-pendeny Graph, Run Time Errors, Run Time I/O, View Help
• Run� submenus: Make all and Run, Make sim.onf, Make C++ Soure, Makesim Exeutable, Fore Full Rebuild, Run Sim, Debug Crashed Sim, RunHelp
• Render� submenus: Show Output URL, Render Help89
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• Help� submenus: About, Contents, Keyword, Man pageEah menu item is ative in the prototype. The File, and Help items are relativelyself explanatory and follow typial designs in other programs. The Edit menu optionslaunh various struturally spei� editors. The ell and map editor have already beendisussed. In addition the prototype supplies a struture editor, a materials editorand a font editor. The Run menu provides various ode generating and exeutionoptions.The prototype editor was given only a low priority in terms of development. Al-though it omprises about 25% of the entire ode base (11,000 lines), building itonsumed less than 10% of the total development time sine it was the least sophis-tiated element of the framework.3.3.3 Operations for Moving Model ComponentsFor model submeshes to be moved several fundamental operations on the relativeposition and proportion of mesh omponents are required. Within the prototypethese operations are implemented as funtions that an be alled by the user afterthe initial mesh is built with the interfae, but prior to generating a solution. Withina more developed PSE these operations ould be built into a detailed graphial userinterfae, whih ould infer their use through a sequene of positions that the userspei�ed for the model. The urrent user interfae is not sophistiated enough tosupport the spei�ation of a sequene of motion points.Five operations are required for moving model omponents:
• Move Grid to absolute position 90
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• Move Grid Relative to urrent position
• Resale Grid
• Get Grid Position
• Remesh GridSine meshes within the MOOSE an be nested hierarhially eah of these operations,when applied to a given mesh, will also be applied to eah of its submeshes. This ishelpful sine it allows the onstrution of omponents from olletions of submesheswhih will behave in an expeted way when an operation is applied to a parent.Two operations for motion are provided, one whih takes absolute positions inthe overall parent mesh, and a seond one whih moves omponents relative to oldpositions. User funtions may need to link the movement of otherwise unonnetedmesh omponents. To failitate this a funtion whih reads grid positions is alsoprovided.Resaling a mesh hanges its dimensions, either its width or length, or both.Resaling operations may be required to represent a variety of zones within a sim-ulation whih must gradually reede to allow a simulation omponent to move intoa new geometri spae. Squashing or strething a region by only small degrees willhave a minimalisti impat on a simulations if the region is ontinuous in terms of itsmaterial and PDE de�nitions.It is always possible to rede�ne the mesh density for either the entire geometride�nition, or at ertain sub bloks of a given simulation. Inreasing the mesh densityeither loally or globally is an important operation beause it allows the user to makeertain deisions regarding the overall preision of the model. In the validation hapterseveral models are tested at various ranges of mesh densities. Models may also require91
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Figure 3.4: Example Thermal Plotvery loalized remeshing. Being able to speify whih areas of the model require extramesh points allows the user to fous the mesh on spei� areas of interest or areaswhih are known to be troublesome.3.3.4 Output OptionsThe MOOSE provides a variety of output options whih automate the generation ofgraphis. The MOOSE's output library generates line and surfae plots whih areembedded in HTML �les and plaed in the users publi_html diretory, organized by92
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Figure 3.5: Example Surfae Plotprojet and simulation run. Several output graphi styles are supported, the thermaland ell styles are provided by the MOOSE framework. The MOOSE is also able tospawn other plotting pakages. GNUPLOT an be used by the MOOSE to generatea broad range of additional plot styles. The funtions whih link GNUPLOT to theMOOSE ould in priniple be easily extended to support other pakages.Figure 3.4 shows an example thermal plot for the rod insertion problem. This plotrenders �ux levels for the �rst energy group as olors, a legend beside the graphigives an indiation of the sale. This plot shows where the ell boundaries are (lightgrey lines) as well as where the material boundaries are (white lines). Loating thematerial boundaries and the ell boundaries is important for model debugging andonstrution. The various labels and legends surrounding the plot are generated bythe MOOSE's line and text drawing pakages. Transparent frames are plaed under93



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthe text so that as the thermal graph hanges olors the text remains visible. Themini-graph plotted in the lower left of the �gure shows the shape of the thermalgraph plotted as a unitless line graph for omparison with the thermal graph. This�gure represents a single frame from a transient simulation disussed in more detailin hapter 5. The slow motion label refers to the frame rate, this simulation wasrendered at 12 frames per seond in a standard .AVI �le. During the exursion 60frames were rendered for eah seond of simulation time, when replayed at 12 framesper seond this produed a slow motion e�et in the video.A surfae style rendering of the same data generated by GNUPLOT via theMOOSE is illustrated in Figure 3.5. GNUPLOT o�ers a variety of other plot meha-nisms many of whih are also inorporated into the MOOSE inluding line plots andontour plots. The MOOSE also provides a simple mehanism to inlude GNUPLOTommands so that if the user is familiar with GNUPLOT additional labels and othergraphial details provided by GNUPLOT an be inorporated.3.4 Implementation Languages and MethodologyThe MOOSE is written in several di�erent languages and uses a variety of libraries,sript interpreters, and helper appliations to allow it to aomplish its simulation ob-jetives. In the last 20 years a wide variety of programming languages and methodshave ome into ommon use. Along with very ommon and well established lan-guages like FORTRAN and C, several methodologies have ome into popular usagelike parallel programming and objet oriented programming. Advaned tehniqueslike ode generation and symboli manipulation have also beome more ommon inreent years. The MOOSE borrows from many di�erent paradigms in the attempt tosatisfy a wide variety of needs. To some extent the implementation of the MOOSE94



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringhas been undertaken in an experimental fashion. Some aspets of the MOOSE aremore suessful than others in this regard. This setion will brie�y touh on some ofthe more unusual aspets of the design of the MOOSE.3.4.1 Library InterfaesThe MOOSE relies on several numeri solution libraries to generate solutions to theproblems enoded by the user. Two basi assumptions are made: the problem isalways assumed to be sparse, and the problem is always assumed to be governed bylinear relationships.PETS [19℄ is a well known linear solver developed at the Argonne National Lab-oratory by the Mathematis and Computer Siene division. PETS an operate ineither uni-proessor or multi-proessor modes. At its ore it provides the user witha variety of methods and data strutures for representing sparse linear matries andan generate solutions to those matries through a olletion of well understood algo-rithms, most notably Conjugate Gradient and GMRES.SLEP [79, 80, 81℄ is an eigenvalue solver whih is based on PETS. SLEPuses the data strutures and software design methodology of PETS for the solutionof eigenvalue problems of both the standard Ax = b and the general Ax = kBxvarieties.Although these 2 solvers have proved to be the most useful, the MOOSE's sparsesolver interfae is not tightly tied to either pakage. The MOOSE only requires apakage whih supports any rough variation of the following set of basi funtionalls: Initialize_Solver()Matrix_Create(size) 95



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringVetor_Create(size)Matrix_Add(row,ol,element)Vetor_Add(ol,element)LinearSolve(Matrix,vetorB,vetorX)EigenSolve(MatrixA,MatrixB,vetorX)The generated ode makes alls to these simpli�ed virtual funtions. A software layerexists between the generated ode and the library pakage to failitate these alls.PETS requires several steps in the reation of a matrix, so the MOOSE has a speialversion of Matrix_Create() whih handles all of the alls required by PETS. Inthis way the MOOSE is solver pakage independent. The more rudimentary pakageLASPACK, an also be used by the MOOSE, to enable this pakage the appropriate�ag is set prior to ompilation, and when the fundamental funtions are alled theMOOSE uses basi funtion alls appropriate to LASPACK.As a pair, SLEP and PETS are quite �exible so most of the development of theMOOSE was driven by their solution strategies. SLEP and PETS are themselvesbased on other pakages and an also at as interfaes to other pakages. SLEP andPETS are based on the dense linear solver pakages LAPACK (note that LASPACKand LAPACK are unrelated) as well as a generi BLAS pakage. Hardware spei�versions of LAPACK and BLAS are available. The MOOSE was developed witha high performane platform independent BLAS known as ATLAS (AutomatiallyTuned Linear Algebra).The most reent version of SLEP inludes a Krylov-Shur solution method [152℄.The SLEP authors urrently reommend the Krylov Shur method as the defaulthoie. Reent experimental tests with the MOOSE on�rm that this is the besthoie. PETS provides interfaes to a variety of other pakages. SuperLU [48℄96



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringis a sparse diret linear solver that also has a distributed version, SuperLU_DIST.SuperLU an be transparently built alongside of PETS, and provides a diret methodfor inverting sparse matries.The diret solver often found solutions to problems muh faster than the iterativesolver and its results were often more preise, although the diret solver tended to uselarger amounts of memory than the sparse solvers. Both solution methods proved tobe useful in generating �nal results. In some ases, espeially the steady state studieswhere high degrees of preision where essential, the diret solver was the most useful.In transient ases the iterative solver seemed to be more useful.3.4.2 Merging MAPLE, C, FORTRAN and Other LanguagesThe MOOSE is built from several di�erent languages. Eah was seleted for itsdominane in a partiular domain and its appliability to a partiular developmentgoal. Beause the MOOSE aspired to be both apable of solving very omputationallydemanding problems as well as �exible and malleable, no single language seemedappropriate for its implementation. The MOOSE interfaes to a variety of externallibraries. Some are written in C, some in C++, and some in FORTRAN. Most of thesolving power of the MOOSE is leveraged from PETS and SLEP, whih themselvesare built on other libraries. Legay FORTRAN77 solvers like ARPACK [165℄ areaessed via SLEP's interfae. To a large extent the developers of PETS and SLEPhave seamlessly merged their libraries with the underlying FORTRAN ode. Whileit is of some interest to reognize the important presene of FORTRAN librariesunderneath the MOOSE, FORTRAN ode is ompletely hidden by the libraries whihutilize it.The MOOSE's user level programmer interfae is written in C and MAPLE. The97



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringbasi text GUI is a C++ program whih launhes the various ode generators, inter-preters and ompilers. The MAPLE matrix generator ats as the equation and datastruture interpreter for the MOOSE. MAPLE is typially thought of as a symboliproessing language for solving ertain ontinuous integrals in alulus. MAPLE washosen for this projet beause it also provides a powerful sripting language whihis adept at symboli manipulation. Beause MAPLE is a sripting language, the sizeof a task that an be solved with a MAPLE sript is somewhat limited, and so theMOOSE annot use MAPLE to analytially or diretly solve the supplied system ofequations. Instead the MOOSE uses a program written in MAPLE, the matrix gen-erator, to translate a problem expressed in a symboli ontinuous representation intoa C++ program apable of generating a matrix whih approximates the ontinuousproblem in a �nite di�erened form. The generated program is ompiled by g, anda speial funtion is onstruted for eah simulation whih an be alled repeatedly.This funtion must be de�ned before simulation ompile time.Although the equations and data strutures as spei�ed by the user are �xed onethe exeution of the simulation begins, various simple parameters an still be ad-justed; the oe�ients of di�usion, the size of the region that is being solved for, orthe magnitude of a time step. The user is allowed any number of equation de�nitionsprior to simulation exeution via the equation group parameter. So if a physial modelrequires a sequene of appliations of alternating representations, say for example ina Blak/White style Leap Frog method, this an also be aomplished. The MOOSEuses a C++ hierarhial objet oriented representation of the model for the purposeof matrix generation and overall data organization. The user aesses top level objetmethods through a simpli�ed C interfae. While the MOOSE is written in C++,an understanding of C++ is not required to be able to onstrut models with theMOOSE. Similarly PDEs expressed in MOOSE syntax require only the most rudi-98



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmentary understanding of MAPLE's onventions. Where possible, syntax onventionsfor the MOOSE's interpretation of PDE's was seleted so that it would appear similarto C.3.4.3 Code GenerationCode generation [22, 28, 29, 37, 43, 44, 59, 63, 82, 100, 107, 143, 167℄ as a tehniqueoverlaps to some degree with ompilation. The priniple di�erenes between the twomethodologies are normally found in sope and intention. While a ompiler takesthe symbols from one general purpose language and onverts them into the symbolsof another general purpose language (for example a program whih onverts C intoassembly), the role of ode generation is more oblique and often very task spei�.Code generation will often imply a ertain trade o� involving omplexity sizeor speed. It an be a very ompliated option to hoose, so the advantages anddisadvantages should be arefully onsidered before it is undertaken. Consider avetor-based drawing pakage where a user draws shapes with onneting ars andlines by speifying verties with a mouse. An obvious way to reord the image wouldbe to simply save this list of verties and note their onnetion order. Reonstrutingthis image would require the use of the same general purpose program whih saved it.If the drawing program used ode generation to save its �les, instead of simplysaving the list of verties, it ould save in soure ode a sequene of funtion allsneessary to redraw the image. In this way the image ould be transmitted to anotheruser who did not have the same general purpose data �le reader. The result of theprogram generator might be smaller, simpler or faster than the general purpose data�le reader. The generated program would not be smaller than the simple data �lewhih stored verties, and the ode whih built the generated program would also be99



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmuh more ompliated to implement than the ode whih simply saved a list of datapoints.While ode generation is intriguing as a program design methodology it has awide variety of assoiated pitfalls that need to be avoided. The biggest problem withode generation is that while the ode generator may seem to be generating odewithout any di�ulty, �xing a bug in the ode generator's progeny is not so simpleas starting up a debugger and looking for mistakes. Any �aw in the hild is orretedby arefully studying the parent. The notion of ode generation as an option forprogram developers is a relatively reent one and as suh there are few tools availableto assist with the task. The MOOSE's ode generator is built with large olletionsof simple formatted print statements. Lines of C ode are onstruted as strings bythe MOOSE's ode generation modules and written to �les for later ompilation.Code generation beame neessary for the MOOSE framework beause whileMAPLE had general �exibility in terms of symboli manipulation, it laked the exe-ution speed neessary to generate large matries. PETS and SLEP, the solvers ofinterest, provided C++ interfaes only. While the matries of interest ould ertainlybe hard oded in C++ for spei� problems, given the low level and both rudimen-tary and strit variable typing system used by C++, the job of manipulating datastrutures and equations was quite onerous.Code generation then beame the bridge between the two languages. The matrixgeneration program builds a naive but very fast funtion ompatible with the MOOSEC++ libraries. This funtion an be ompiled and alled by the MOOSE and usedto onstrution matrix vetor pairs in a data struture format whih was ompatiblewith the numerial solvers. The funtion generated by the matrix ode generationprogram is �exible enough that a variety of model modi�ations an be done withoutregenerating the ode for onstruting the matrix. Some example ode generated by100
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Copy nFigure 3.6: MOOSE Family Struturethe MOOSE is presented in the Appendies 3, the PDEs whih were used to generatethis ode are presented in Appendix 2.3.4.4 MOOSE's Simulation GroupsA single MOOSE simulation projet an be on�gured as a group of related problemswhih share the same main traits haraterized by the geometry and ontrol software.Eah simulation group member may however express its own spei� traits in terms ofwhih data strutures, partial di�erential equations and solution tehniques it applies.A simulation projet may simultaneously de�ne multiple group members prior toompile time.Eah group member uses the same geometry. The simulation group de�nes aninitial position for all moving omponents, as well as provides a onrete name for eahell grouping within the geometry for all group members. Group members di�erentiatethemselves by using di�erent de�nitions for the olletion and arrangement of ellswhih de�nes the group. Some traits, in partiular those whih determine the preisehoie of PDEs for a given data struture, an be expressed seletively at run time.101



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringReall that the ell de�nes data strutures, materials, and PDEs used at eah loation.Other traits, like for example the size of the data strutures used to represent themodel, must be hosen prior to run time.Eah group member uses the same general ellular struture of the group. Forexample, a group of simulations might all de�ne the entral region of the geometryas oupied by ells named �ore�. Exatly whih de�nition for the ore ells is beingused will be determined by whih group member is seleted. A very simple de�nitionmight neglet ertain parts of the physial model whih other members ould inlude.Simulations an also opy themselves. Copying a simulation member means re-ating data strutures and funtions apable of generating matries, as well as vetorsapable of storing solutions. Steady state problems usually do not use opies, a singleinstane of a matrix vetor pair is normally su�ient to solve a steady state simula-tion. Transient simulations whih need to have multiple spatial referenes will oftenreate several opies. A transient simulation whih uses a multi-step integration teh-nique will need a opy of the variable spae for eah stage in its integration. Reallthe disussion of multi-step methods from Chapter 2 where a history of points wasmaintained. The history is reated in the MOOSE data strutures by onstrutingmultiple opies of the simulation solution matrix and vetor. Eah opy of the solutionvetor is assigned an index whih relates it to an instane in time.These onepts are perhaps best illustrated with a simulation example. Supposethat an engineer is interested in modeling a nulear reator ore, but is unsure ofexatly how to alibrate the model so it is preise enough to apture the variousfeatures of interest. In order to set up a transient model the simulation engineermust �rst study the steady state ase. The transient model requires a di�erent set ofPDEs and extra variables to model the same senario as the steady state eigenvalueproblem. The transient model will also require several opies of the vetor spae to102



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringrepresent the evolution of the model over time. This simulation design was used inthe ase study presented in Chapter 5. Example equations are presented in Appendix2. To aomplish this the engineer onstruts a simulation group by speifying thelayout of the ells for the reator model. Some ells represent the ore, others representthe moderator. The physis and onstants whih represent these elements an bespei�ed from �rst priniples in the urrent implementation of the MOOSE. Somespeial ells represent moving omponents. A protool to initialize the simulation aswell as a de�nition of the run time plaement of omponents must also be established.These global simulation elements are represented by the box at the top of Figure 3.7.The individual group members are onstruted by reating di�erent formulationsof the physial model. One simulation group member is used to model the steady stateproblem, the other two simulation group members will be used to examine variationson the transient problem. A trapezoidal transient integration sheme although stable,is not neessarily the most e�ient. A multi-value transient integration sheme whihmaintains a history of multiple derivatives an potentially take muh larger steps thana trapezoidal sheme and hene will require less exeution time although has moredemanding memory requirements. These various formulations will determine the sizeof the data strutures, they are pitured in Figure 3.7, labeled as A, B and C.Simulation A implements a �ve group steady state nulear di�usion problem. 5variables per ell are required, one to represent eah of the 5 energy states of the �ux.This model is developed in detail in the �rst part of Chapter 5 whih examines thesteady state simulations of the MNR. Simulation B requires 6 preursor groups tobe represented in addition to the 5 energy groups for a total of 11 variables per ell.In addition to the 11 variables required by sibling B, simulation C also requires anadditional 15 variables to keep trak of the seond, third and fourth derivatives with103
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringrespet to time of eah �ux energy group for a total of 26 variables. Simulation C isdisussed in detail in the seond part of Chapter 5.Simulation A only shares geometry and ontrol traits with its other group mem-bers. Although simulation B and C use di�erent transient order integration shemes(labeled 1) they use a ommon initialization method (labeled 2). Certain elements ofthe de�nition of their partial di�erential equations are idential as expressed by theseequations. While individual simulation de�nitions whih determine data struturesize must be seleted at ompile time, the seletion of individual PDEs may be doneat run time. Simulation B and C must initialize their history prior to exeution. Thisis done by solving a set of equations whih assume that all rates of hange of �ux levelsare zero. In the ontext of the partiular example a low power steady state solutionis needed to prime the history for both the neutron �ux and the delayed preursors.Transient simulations, like B and C, typially require the reation of a opy of thesystem. Reall that a opy means a dupliate of the entire vetor representing thevariables for the simulation, as well as a separate instane of the matrix used to solvethat vetor. Transient formulations an be written in a very general way as
φn+1 = φn +

dφ

dt
△ t (3.1)Rather than maintaining all solution vetors 1 through n, whih would representeah time step taken by the model, a pair of problems is solved in a yli sequene

φ1 = φ2 +
dφ

dt
△ t (3.2)

φ2 = φ1 +
dφ

dt
△ t (3.3)105



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringwhere the supersript refers to the opy either, 1 or 2. The simulation engineer isresponsible for setting up the time marhing algorithm and speifying the details ofthe integration method through the PDEs. Typially equation 3.2 is solved followedby adjusting the time step or omponent positions after whih equation 3.3 is solved.This proess is repeated for every step in the simulation. Many problems an besolved with just one extra opy although in some senarios, like for example a multi-step simulation, several may be required depending on the spei� details of theproblem.Having de�ned the above simulation group, the simulation engineer now has threetools to investigate a moving mesh problem. The �rst tool, a steady state model,an be used to study still snapshots of the system. The two transient models providealternate integration tehniques. If memory is an issue it may not be possible to usethe multi-value methods, if however stability or preision are issues then the simplertrapezoid model may be inappropriate. Being able to easily swith between subtlemodel variations is one of the fundamental strengths provided by a general framework.Additional examples whih show how the MOOSE ommands funtion is presentedin Chapter 4.3.5 Mathematial Priniples Behind the MOOSEMost of the mathematial priniples implemented as part of the MOOSE are standardmethods whih were disussed in Chapter 2 and should be aessible to pratitionersaross a variety of �elds. Sine the MOOSE has taken the approah advoated by re-searhers interested in problem solving environments, the MOOSE pakages togethermany di�erent tehniques. The MOOSE promotes the position that engineering toolsshould be built for reuse rather than single use. Re-usability and on�gurability when106



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringahieved without sari�ing other desirable traits like e�ieny or portability give atool-set a marked advantage over other methodologies.Setion 3.5.1 will desribe in some detail how the MOOSE generates matriesompatible with high-performane solution libraries from user de�ned input �les. Theremaining setions in this hapter present a olletion of novel tehniques mesh linkingtehniques implemented within the MOOSE whih failitate a high degree of aurayin the results generated by the MOOSE.3.5.1 Translating PDEs into Matrix Generating FuntionsPart of the goal of the projet is to take advantage of the highest performane solversavailable, it is neessary for the MOOSE to generate a representation of the physialsystem of interest in terms that the solvers an proess. The MOOSE must be able totake any physial equation and translate it into a sparse matrix whih an be easilyproessed by an existing pakage.The MOOSE targets problems whih exhibit motion; thus the MOOSE may berequired to generate a new matrix for every step in the alulation. Matries withmillions of elements annot be e�iently generated by a sripting language like MAT-LAB, but a C or C++ program whih links diretly to a sparse solver pakage angenerate thousands or potentially millions of matries as part of a transient alula-tion.One of the di�ulties in working with the neutron di�usion equation is that mostof the physis is embedded within the multi-dimensional onstants. Exatly whatthe onstants represent, how they are omputed, and how many of them are used issomething whih is best left to the physiist.The multi-dimensional nature of the neutron di�usion equation reates other om-107



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringplexities as well. While for some physial systems it is possible to write a single matrixgenerator and allow its parametrization through adjustable physial onstants, this isnot the ase for the neutron di�usion equation. To develop a program whih generatesa sparse matrix version of the neutron di�usion equation, �exible data strutures andfree form equation representation is required. While 2, 4, 8 and 12 energy groups aretypial division in neutron di�usion studies any number of groups are possible, andthe equation generator should be adaptable enough that it imposes as few restritionsas is possible.Take for example a steady state version of the multigroup neutron di�usion equa-tion for whih the modeler has hosen to ignore upsatter, whih was disussed indetail in Chapter 2, written as
−▽ ·Dg ▽ φg + ΣRgφg −

g−1∑

g′=1

ΣSg′gφg′ = K · χg

G∑

g′=1

υΣfgφg′ (3.4)The symbols D, χ, ΣR, Σs and υΣf are spatially determined onstants. K is theeigenvalue to be solved for. The main parameter of this equation is the energy groupdivision number G whih determines how many equations are represented and theexat struture that those equations will take.If a system is onstruted with G = 2 a pair of equations results
−▽ ·D1 ▽ φ1 + ΣR1φ1 = K · χ1

G∑

g′=1

υΣf1φg′ (3.5)
−▽ ·D2 ▽ φ2 + ΣR2φ2 − ΣS12φ1 = 0 (3.6)When G = 2, typially, χ2 = 0, so this term was left out of the seond equation.The struture of eah equation is dependent on G, and simultaneous solutions to108



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringboth equations are required for the solution of one spatial point. There are variousinterpretations for limits in the sattering term. When it is written as ∑g−1
g′=1 ΣSg′gφg′it represents down-satter only. This term may also be more generally written withfull up-satter and down satter as ∑G

g′=1 ΣSg′gφg′, or more onservatively with down-satter to one group only as ΣS(g−1)gφg−1. The syntax for the MOOSE has beendeveloped to be generi enough to apture all of these representations, although noneof them are hard oded into the MOOSE.In MOOSE notation the neutron di�usion equation with down sattering only isexpressed as:seq([- LAPL(D*Phi[g℄) + Phi[g℄*Sigma_r[g℄ - sum(Phi[g℄*Sigma_s[j℄[g℄,j=1..g-1)= K(Chi[g℄*(sum(nu_Sigma_f[j℄*Phi[j℄,j=1..G))), Phi[g℄℄,g=1..G)The interpretation of this version follows term for term the interpretation of theoriginal, although it only represents down-satter. The LAPL() operator is MOOSEspei�, and provides a linear approximation to the ▽ · Dg▽ operator in the orig-inal equation. The seq() and sum() operators represent a sequene of equationsand summations respetively. The K() operator indiates to the MOOSE that twomatries need to be derived from this problem so a general eigenvalue problem ofthe form Ax = kBx an be solved. The symbols D, Chi, Sigma_r, Sigma_s andnu_Sigma_f represent their Greek ounterparts. The symbol phi[g℄ is spei�ed onits own so that the MOOSE understands whih terms in the PDE are variables whihneed to be solved.Although MAPLE does provide ode generating funtions these only play a smallrole in translating the above PDE into a matrix generation program. They are usedin the late stages of ode generation for the elimination of ommon expressions, whih109



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtend to turn up in some of the onstants. MAPLE as a programming language o�ersa broad variety of expression searh and substitution funtions (whih are relied onheavily by the MAPLE ode generation program). MAPLE is also very good atrearranging the simple polynomials whih tend to result in various terms whih willanel eah other out. For example, the di�erene Sigma_s[g℄[g℄ - Sigma_s[g℄[g℄,an be easily removed by the matrix generator before any ode is atually output.To build a matrix from the PDE, the matrix generator program must identifywhih variable is to represent the matrix diagonal. For the A matrix this must be non-zero, although for the B matrix the same requirement does not hold. The MOOSEgenerates an approximation to any �nite di�erene operators, and estimates newvalues for onstants as they are modi�ed by those operators. For eah variable in thePDE the onstant and variable terms are �rst separated, and then those algebraiterms are translated into their orresponding C ode.So for example, using equation 3.6, the MOOSE �rst symbolially isolates thediagonal multiplier for one spatial dimension given that φ2 is to represent the diagonalelement. An approximation of▽·D2▽φ2 in �nite di�erened form is generated. Thisterm represents the �ow into and out of a unit ell in the reator ore. A typial �nitedi�erened approximation is derived from the �rst order Taylor series approximationto the �rst derivative whih is applied twie. In one dimension the di�erene of theforward derivative and the reverse derivative is
dφ

dx
|xi+

∆

2

∼= φi+1 − φi

∆
(3.7)

dφ

dx
|xi−

∆

2

∼= φi−1 − φi

∆
(3.8)where xi represents the position in spae, ∆represents the distane between points.110
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D(xi +

∆

2
) =

1

2
(Di+1 +Di) (3.9)

D(xi +
∆

2
) =

1

2
(Di−1 +Di) (3.10)Combining these and taking the seond di�erene

▽ ·D2 ▽ φ2 =
1

2∆
(Di+1 +Di)

(
φi+1 − φi

∆

)
− 1

2∆
(Di−1 +Di)

(
φi−1 − φi

∆

) (3.11)When the multiplier for φi is solved for
1

2∆2
Di−1 −

1

2∆2
Di+1 (3.12)Inluding the remaining terms the �nal pre�x derived is

− 1

2∆2
Di−1 +

1

2∆2
Di+1 + ΣR (3.13)The ode generator is able to identify 1

2∆2as a repeated sub expression, so prior toode output the preeding approximation is rewritten as a pair of expressions
t1 =

1

2∆2

V ALUE = −t1 ·Di−1 + t1 ·Di+1 + ΣR (3.14)As a last step this polynomial must be expanded into ode whih an be ompiled111



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringby g using referenes to data strutures used by the MOOSE. The �nal ode frag-ment for setting the diagonal matrix value of equation 3.6 for the two group modelwill look like this:ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);t[1℄ = 1. / 2*(dx * dx);VALUE = t[1℄ * (grid[x℄[y℄->->D[2℄ + grid[x+1℄[y℄->->D[2℄) +t[1℄*(grid[x℄[y℄->->D[2℄ + grid[x-1℄[y℄->->D[2℄)grid[x℄[y℄->->Sigma_R[1℄;matrixdr_ADD(ROW_POS, VALUE);The variable X_st stores the starting position in the vetor for this map. Sine multiplelinked maps are possible, X_st is only zero for the �rst one. P_SIZE stores the propertystruture size. In the preeding example sine G=2, and no other properties werede�ned for the ell P_SIZE was also two. There is no limit on P_SIZE. Typial valuesrange anywhere from one to twenty depending on how the problem is spei�ed. Thearray grid[x℄[y℄ stores geometry information about the problem. This data strutureis automatially generated by the MOOSE from geometry input �les supplied by theuser. The C ode generated by the MOOSE attempts to retain as many of the symbolsas possible from the original PDE, so that onstant names like Sigma_r or D whihappear in the PDE will also appear in the generated ode. This kind of bookkeepingwas invaluable in debugging the MOOSE.Notie that the above ode fragment only sets the diagonal value. Additionalode fragments are required to omplete the row. Three more polynomials need to beomputed as row matrix entries for this example. In addition to these requirements,another row must be built for equation 3.5, whih requires three more polynomials.Matrix rows must be built for border sharing either using interpolation or onserva-112



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtion. The deision proess involved in onstruting a onservation based border isdisussed in setion 3.5.4. A partial listing for the ode generated by the MOOSE fora two dimensional two group transient problem is given in Appendix 3.The sparse matrix generator built by the MOOSE is built from olletions of simplepolynomials as in the preeding example. While the diagonal oe�ient for the twogroup one dimensional ase generates a fairly simple polynomial, this is not alwaysthe ase. Some polynomials have literally dozens of terms in them, even after theidenti�ation and elimination of 5 or 10 repeated sub-expressions. This is espeiallytrue in the transient alulation for onstant entries in the b vetor.Code generated by the MOOSE an be quite verbose. It is not unusual for theoutput from the MOOSE sparse matrix generator to be in exess of 20,000 lines. As arough measure of omplexity, a human programmer normally odes 1,000 lines in onemonth. The MOOSE therefore is doing the work of a engineer programmer translatingan equation into a omputer program at a remarkably fast rate.It may be argued that sine the ode generated by the MOOSE is generated auto-matially that this ode laks ertain optimizations that a good human programmerwould use. While this may be the ase, it is also the ase that the automatiallygenerated ode demonstrates performane that is quite aeptable. During develop-ment, the MOOSE libraries and the automatially generated ode were analyzed fore�ieny using several pro�ling tools, suh as gprof and others. These tests showedexeution time was always dominated by the numerial solution libraries. For thefastest linear solver, initial sparse matrix setup and MOOSE map lass onstrutiononsumed no more than 20% of the total exeution time. For many of the eigenvalueproblems matrix setup time takes less than 1% of the total exeution time.The time saved by using an automati equation translator for the wide variety ofpossible PDEs of interest far outweighs any e�ieny that might be gained by hand113
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Figure 3.8: Conservation of Flowoding the setup proedure for individual problems. The initial e�ort in buildingthe MOOSE libraries and equation translators is not regained immediately, but afterseveral hundred problem instanes are onstruted. This is the argument for buildinga arefully designed generi tool intended to be reused, opposed to tools whih areonly appropriate for a single use.3.5.2 The Problem of ConservationConservation, in the ontext of this thesis, refers to whether a simple property ofonservation of mass at a ell or grid boundary holds or not. Normally when materialpasses into a boundary the same material must pass out of the boundary. Conser-vation, as a mathematial property of numerial balane, always holds for a �nitedi�erene formulation on a regular Cartesian grid. Consider the illustration in Figure3.8. The equation, or set of equations whih represents the value of the funtion forell 1 will estimate a �ow of material out of ell 1 and into ell 2. The expressionwhih ell 2 uses to estimate the �ow into it from ell 1 must exatly balane it. Ifthis ondition does not hold, then partiles are being either reated or destroyed andthe problem eases to be meaningful. 114



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringReferring to the previously disussed example of the neutron di�usion equation insetion 3.5.1, on a Cartesian mesh the �ux aross the boundary AB will be omputedusing two expressions
dφ

dx
|outAB1

∼= φ1 − φ2

∆
(3.15)

dφ

dx
|inAB2

∼= −φ2 − φ1

∆
(3.16)These expressions are a natural result of the symmetry of the problem, with alittle attention to the diretion of the signs, they work out to be equivalent. Whenworking with more omplex interfaes along AB the symmetry of the arrangement ofthe problem is often disrupted, and in these situations onservation an no longer beassumed to hold and speial tehniques must be used to minimize errors. There are3 basi senarios that are onsidered in the following setions where it is not obvioushow to maintain onservation. Solution methods whih redue errors are proposedwhih are demonstrated through numerial experiments in the next hapters. Thethree situations are1. equally sized grid elements whih are misaligned, solved with non-linear inter-polation tehniques2. unequally sized grid elements, solved by a geometri onservation rule3. material disontinuities along boundaries, solve by a material disontinuity rule
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering3.5.3 Nonlinear Interpolation within Linear ModelsAs disussed in Chapter 2, in the setion on omposite grid methods, many authorsargue that non-linear interpolation methods are su�ient to link meshes, in parti-ular see [39, 154℄. Several papers present mathematial proofs on the subjet whihquantify the degree of error introdued by linking meshes with various orders of in-terpolation methods for ertain ases related to �uid dynamis.Given the suess desribed by these authors it made sense to work with non-linearinterpolation methods as a mesh linking priniple. During the ourse of developingthe MOOSE and experimenting with various moving meshes it was learned that thispriniple holds under ertain spei� irumstanes. If a pair of meshes is linked, butmisaligned, and the mesh sizes on either side of a boundary are equal, and there areno speial material disontinuities, then it was found that the meshes ould e�etivelyommuniate using a non-linear interpolation method for either side of the interfae.For example, in Figure 3.9 where two equally sized meshes meet at a boundary lineAB, despite the fat that they are misaligned, the material leaving ell 1 an beorretly estimated and balaned with the weighted partial sums of material enteringell 2 and ell 3. The justi�ation is that this situation preserves symmetry. Using oneof the onservation rules introdued in the next setion would destroy this symmetry.In the ase of the neutron di�usion equation neutron urrent is omputed byestimating the gradient of the neutron �ux on either side of the boundary AB. Theneutron �ux at the enter of ell 1 is known, the gradient is omputed by estimatinga value for the �ux whih lies somewhere between the enters of ell 2 and ell 3and using this to ompute the gradient. As will be illustrated in tests at the endof hapter 4 and throughout hapter 5 this tehnique alone works reasonably well solong as there are no material disontinuities, and so long as the ells on either side of116
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Figure 3.9: Conservation at Non-Aligned Boundarythe boundary are of the same dimensions.Several nonlinear interpolation methods were experimented with during the ourseof the development of the MOOSE mesh linkage inluding Lagrange and Newtoninterpolation, although spline based interpolation methods were found to yield thebest results. A spline is a pieewise polynomial of degree k that is ontinuouslydi�erentiable k-1 times. A ubi spline is a pieewise ubi polynomial that is twieontinuously di�erentiable.Despite the suggestion of nonlinearity in the name of the interpolation, usingnonlinear interpolation methods is onsistent with an overall linear solution methodsine the non-linear terms are resolved before the system is solved. Sine the MOOSEassumes that eah submap uses a uniform mesh spaing ertain simpli�ations inmulti-point interpolation methods an be realized.The situation illustrated in Figure 3.9 is the simplest ase where the interpolationsheme an exlusively use points along the vertial axis. If the linked meshes do notuse the same ell sizes the interpolation routines may be required to use more points.Interpolation routines are used both to onnet meshes spatially but also to onnetmesh points from di�ering time frames. Due to the motion of omponents, and the117



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringallowable arbitrary alignment of meshes a variety of interpolation situations must behandled. For example, requests for interpolated data made near the orners of meshes,or exatly in line with a row or olumn of data points will limit the number of pointsused by the algorithm. Conversely, interpolation requests made in the middle of a gridmay use as many as 16 data samples to estimate the value at an arbitrary loation.The MOOSE interpolation routines support the following senarios
• One dimensional interpolation is required (a point along a line along the X onlyor Y only axes)
• Two dimensional interpolation is required (a point bounded by four or morepoints)
• Three points are available in either the X or Y diretions
• Four points are available in either the X or Y diretionsIn the illustrated ase in Figure 3.9 only 3 points are available, this ase ours neargrid orners. Further away from orners it was found that a pieewise polynomialwhih used 4 points to de�ne the shape of eah setion was bene�ial. Figure 3.10 a)illustrates how the 4 point spline works. To estimate a value between points 2 and3 a line is onstruted whih passes through those points. The slope of the line atpoints 2 and 3 is estimated using a �nite di�erene. In �gure b) this proedure isgeneralized for two dimensions near a orner of a grid. A value for the irled point(I) is to be estimated from the neighboring ells numbered 1-12. 4 points an be usedto estimate the shape of the surfae in the X diretion, but only 3 points are availableto estimate it in the Y diretion due to proximity with the edge.In the simplest ase where 3 points are available along a line a parabola is on-struted. For example given the line 118
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y = ax2 + bx+ c (3.17)and the 3 points where x1 − x0 = x2 − x1

(x0, y0), (x1, y1), (x2, y2)Using simple �nite di�erene approximations for the �rst and seond derivativebased on the given points, and equating them to the exat �rst and seond derivativesfor the line it is possible to solve for a, b, and c in terms of y0, y1, and y2.
a =

y2

2
− y1 +

y0

2
(3.18)

b = −y2

2
+ 2y1 −

3y0

2
(3.19)

c = y0 (3.20)During the exeution of the model some additional steps an be avoided by rear-119



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringranging the solution so that for a spei� x loation a weighted sum of y0, y1, and y2is used. Given
w0 = 1 − 3x

2
+ x2 (3.21)

w1 = 2x− x2 (3.22)
w3 = −x

2
+
x2

2
(3.23)a new approximation an be written as:

y = w0y0 + w1y1 + w2y2 (3.24)Although an x2 term appears in these formulas the value of x2 is determined priorto the solution of the matrix. The MOOSE always assumes that the position of allomponents are known in a given time frame so the weight vetor an be omputedat run time just prior to the solution of the matrix.3.5.4 Boundary Sharing Conservation RulesThe MOOSE grid system onnets meshes by using a ring of phantom ells aroundeah mesh. Phantom ells reprodue values from other meshes and provide a onve-nient methodology for linking meshes. The example in Figure 3.11 shows an explodedview of two meshes of di�erent resolutions. The phantom ells are marked with theletter 'P'. When the two meshes are brought together the points marked A and B areoinident and the phantom ells of eah mesh are tuked under the atual ells of theother mesh. This setion explains how the MOOSE algorithms ompute the phantom120
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Figure 3.11: Phantom Cells, Exploded Viewvalues.There are two basi methods for omputing the phantom values. The �rst method,already disussed in the previous setion on interpolation, is to ompute phantomvalues using a nonlinear interpolation method. This method works well when the twomeshes use ells of the same size (or at least very lose to the same ell size). However,as test results in the next setion will show, when the interfae is more ompliatednonlinear interpolation is not su�ient to estimate phantom values for the alulationof �ow.Consider the interfae illustrated in Figure 3.12. The equations for linking thesetwo regions are no longer as simple as those desribed at the beginning of the setion.If region 1 omputes values for its phantom ells using interpolation, and then ell 1uses these phantom ells to estimate the �ow of partiles aross the interfae then ell1 uses an interpolation rule to ompute �ow . If instead region 2 estimates valuesfor phantom ells using an interpolation method and then ell 1 estimates its �ow by121
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Figure 3.12: Elements of Flowpeeking at the �ows estimated by region 2, and approximates the �ow out of ell 1 bya weighted average of the �ows into ells 2 and 3, then ell 1 uses a onservationrule to ompute �ow . Using a onservation rule to ompute �ow is less diret,and more omplex. Essentially what onservation rules do is allow the other mesh toestimate �ows using interpolation, and then they assemble, in a pieewise fashion, anestimate for the �rst mesh whih will exatly math.3.5.5 Geometri Conservation RulesThe following analysis will follow a ell-entered, or �nite volume approah that treatssimulation variables as though they are de�ned within retangular regions. The sam-ple problem under onsideration will be assumed to be the neutron di�usion problem,although the same arguments will hold for a variety of other di�usion style problems.Figure 3.13b shows a detailed view of the interfae between region 1 and region 2whih is marked out as the line AB. A single �ux point for region 1 is marked as Φ1,and the �ux for region 2 for the �rst 3 ells along the boundary are marked as ϕ1, ϕ2,

ϕ3. To ompute neutron urrents, or e�etively represent the D▽φ term of equation3.4, a boundary ondition for region 1 whih allows it to ommuniate with region 2 is122
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1.A �rst order di�erene Φ1−Φ∗

1

△x
will be used to approximate the neutron urrent ∂Φ

∂x
.In a ase like the one expressed in Figure 3.13, where the divisions on either side ofline AB are an integer multiple of one another. Conservation of �ux for this spei�ase an be written as
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(3.25)where D is the di�usion onstant previously disussed, △xR1 and △xR2 are the ellwidths in region 1 and region 2 respetively, △yR1 and △yR2 similarly represent the123
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1, ϕ
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∗
3are omputed using a non-linear interpolation method, it would then be possible toompute Φ∗

1 using equation 3.25, and then onservation ould be guaranteed. This isan example of omputing �ow for region 2 using an interpolation rule, and omputing�ow for region 1 using a onservation rule. Alternatively if Φ∗
1 is omputed using anon-linear interpolation rule then ϕ∗
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3 ould be omputed using the followingexpression
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(3.26)Equation 3.26 is the reverse senario whih omputes �ow for region 2 using aonservation rule, and the �ow for region 1 using an interpolation rule. For thispartiular ase estimating ϕ∗
1, ϕ

∗
2, ϕ

∗
3 through interpolation and then omputing Φ∗

1using equation 3.25 tends to produe better results than that estimating Φ∗
1 throughinterpolation and solving for ϕ∗

1, ϕ
∗
2, ϕ

∗
3 with equation 3.26. The reason for this is thatequation 3.26 disards information by assuming that the �ow into eah of the smallerells is an equal fration of the �ow out of the larger ell. If the �rst formulationis used, equation 3.25, then the �ow into the more detailed region maintains extrade�nition, while still being orretly balaned with the �ow out of the larger ells.A olletion of tests (disussed in Chapter 4) whih ompared losed form di�usionresults with results omputed on linked meshes showed that the side of an interfaewhih is more detailed should estimate �ow using an interpolation rule. The side ofan interfae whih is less detailed should attempt to balane the �ow using equation3.25. When mesh sizes on either side of an interfae are about the same, the moste�etive strategy was to use an interpolation rule for both.The atual implementation of the MOOSE framework is not limited to dealing with124



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringinteger multiples of ells. Built into the matrix generator are systems for expressingboth equation 3.25 and equation 3.26 for arbitrary ell sizes and the appropriate rulesfor deiding when to onstrut matrix entries representing these di�erent variations.In pratie ell sizes should be approximately similar, ell size ratios of more than3:1 tend to produe unsatisfatory simulation results. The deision about when toimplement either rule an be made prior to solving the simulation problem itself.Code whih deides on whih rules to apply works on a ell by ell basis, and sans theperimeter of eah mesh prior to onstruting a matrix whih represents the problem.The automatially generated ode whih onstruts these rules tends to be quite long,an example is presented in Appendix 3.3.5.6 Material Disontinuity Conservation RulesConservation an be determined by relative ell size alone, if there are no material dis-ontinuities along the borders. Most papers (see hapter 2, disussion on onservativemeshes) that have investigated linking multiple meshes with either onservation rulesor interpolation rules have simply advoated keeping mesh disontinuities far awayfrom mesh boundaries. For the nulear rod insertion problem this is not possible.In order to simulate the insertion of either a fuel assembly or ontrol rod, materialdisontinuities must be present along the mesh boundary. This presents an additionalompliation, illustrated in Figure 3.14.Figure 3.14 illustrates a situation where the top two thirds of region 1 representssome physial disontinuity of the simulation (in this ase the leading tip of a fuelassembly), while the bottom third of region 1 represents another material, in this asethe moderator for the fuel. Region 2 is entirely omposed of the moderator.In order to ompute the neutron urrent going aross the boundary an average125
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Figure 3.14: Material Disontinuitiesonstant whih represents the material ross setion in both regions is needed. Re-ferring bak to the setion whih disussed the individual elements of the Laplaianoperator, the �rst term of equation 3.11 represents the �ow aross one edge of a ell,in this example the �ow out of the ell labeled ϕ2 and aross the AB boundary isonsidered. This an be rewritten in terms of phantom ells as
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) (3.27)The errors inurred by using mismathed mesh sizes are not nearly as large as theerrors whih result from the heuristi estimate of onstants. In the above ase D∗ asestimated for the region inhabited by ϕ∗
2 must be represented in an ad-ho way as amixture. The mixture is not orretly represented by a simple average of values.The previous setion whih disussed the geometri onservation rules indiated126



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthat region 1 should ompute �ow using a onservation based rule rather than aninterpolation based rule due to the di�erenes in ell sizes. Before deiding to ompute�ow for region 1 with a onservation rule a hek is done to test that region 1 hasno material disontinuities in the area of Φ1. This hek ensures that the ells to thenorth and to the south of Φ1 are the same as Φ1. In the above example this testfails and it indiates that ϕ∗
2 should be omputed using a onservation rule beauseof material disontinuities in region 1. For the following equation, the D term issubsripted with the variable that it is assoiated with
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(3.28)Equation 3.28 an be used to ompute ϕ∗
2 using a onservation rule. Stritlyspeaking the orrupt term Dϕ2

is still used to ompute the �ow aross the boundaryAB. However, sine this term is only relevant in relation to ϕ∗
2 and sine ϕ∗

2 has beenomputed in a way whih fores �ow to be onserved, the inauraies of Dϕ2
areorreted.The material onservation rule works beause it avoid using a heuristi approxi-mation in the linking of meshes. This rule is normally applied along all edges prior tosolving a system of equations. It is often the ase that only a few instanes of this ruleome into play, for example near the leading or trailing edges of a moving omponent.The statement that this rule is more important than the geometri onservation ruleis somewhat problem dependent. Experiene gained during the ase study presentedin Chapter 5 suggested that the material onservation rule had a large impat onsolution auraies.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering3.6 SummaryDuring the ourse of developing the mesh linking strategy several basi priniples wereidenti�ed. They were presented in this hapter in order of priority, lowest priority �rst.To summarize, the basi mesh linking rules are1. Use an interpolation rule to ompute �ow on both sides of an interfae only ifthe ell dimensions on either side are roughly the same, and only if rule 2 and3 are not violated.2. Use an interpolation rule to ompute �ow on the side of an interfae whih hassmaller ells. Use a onservation rule to ompute �ow on the side of an interfaewhih as larger ells, only if the last rule is not violated.3. Use an onservation rule to avoid omputing �ows with heuristially omputedonstants.The justi�ation for eah of these rules has to do with avoiding estimates of quan-tities, either by assuming ertain quantities are equivalent whih may not be, or byomputing values in an ad-ho fashion. The �rst rule only applies in the spei� asewhere ell sizes are equal but simply misaligned and no material disontinuities arepresent, this rule holds as a matter of symmetry sine there is no lear reason to applya onservation rule to either domain.In the ase of a on�it, where it appears that there are too many material disonti-nuities on either side of a mesh interfae interpolation is hosen as the default for bothsides. Finally, if onservation rules are used on opposite sides of an interfae whihexatly oppose eah other, a singular matrix and an unsolvable problem will result. Itamounts to speifying a set of equations similar to ϕ1 −ϕ2 −ϕ3 = 0, ϕ2 −ϕ1 −ϕ3 = 0whih gives no information about ϕ1, ϕ2,ϕ3 unless further equations are spei�ed.128



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThis situation must be avoided by always foring ells on one side or the other of theinterfae to use interpolation should a on�it arise. Normally the hek for materialpurity in the urrent region will redue the likelihood of this on�it, but it an stillour.This hapter has summarized some of the essential details behind the MOOSEframework. As already noted the ode for the framework is quite extensive, thepresentation in this setion should give an indiation of the level of omplexity ofthe MOOSE algorithms, and the details behind some of the omponents. In ane�ort to keep this hapter short many details regarding the implementation have beennegleted, and the presentation of the priniples behind the MOOSE have foused onsimpli�ed examples rather than on the fully general senarios implemented within theframework.Despite this, the mesh linking priniples themselves are not that ompliated andshould be easy to appreiate from a �rst priniples stand point. A simulation ex-pert interested in implementing a linked mesh need not employ all the details of theMOOSE framework. The mesh linking rules an be implemented on their own for aspei� mesh layout, and the same results should be ahievable, either for the ase ofmoving meshes, or for the ase of a stationary mesh with varied resolution.Similarly a simulation expert interested in applying priniples of omputer algebraand ode generation should �nd some of the details presented in this hapter insightful.For the MOOSE ode generation provided a bridging point between a pre-existingomputer algebra language, and high performane numerial solvers. Some authorswho write about ode generation desribe it as a panaea. This kind of hype istypial of trends in omputing, and while ode generation has its plae in programdevelopment, it should be undertaken only with good justi�ation.129
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Chapter 4
Veri�ation
This hapter will present a olletion of problems and their solutions to verify theresults generated by the MOOSE. Along side problem veri�ation some onrete ex-amples of the proedures involved in setting up a problem for the MOOSE will begiven. Problems were hosen from a variety of areas inluding eletrostatis, heatondution, wave propagation, as well as the target area of reator physis. All ofthe problems involve typial �eld and potential alulations that utilize the most im-portant features of the MOOSE. The example problems are hosen to represent eahof the fundamental problem types, either paraboli, ellipti or hyperboli in nature.One and two dimensional problems are onsidered in both steady state and transientvariations. Finite di�erenes are used to approximate �rst and seond derivatives.Problem hoie was made in favour of those examples that have losed form solu-tions. Good soures of problems inlude [34, 105, 108, 128, 166℄.It should be noted that muh researh e�ort has been invested in the subjet ofsoftware veri�ation and validation and while this projet aknowledges the impor-tane of these two subjet areas this thesis does not address either but fouses ratheron model veri�ation and validation. The use of library routines independently imple-130



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmented and tested by other researhers an greatly redue veri�ation and validatione�orts. Software veri�ation and validation properly falls within the domain of soft-ware engineering and deals with issues like proving the orretness of an algorithmand demonstrating that the algorithm generates expeted results.The method of manufatured solutions (MMS) [136℄ is a tehnique whih hasbeen used in reent years to verify problems for whih losed form solutions are notavailable. The goal of MMS is to manufature an exat solution to a slightly mod-i�ed variation of the target problem for the purpose of verifying a simulation. Themodi�ed equations need not represent an atual physial senario, but are ratherbased on the same equations as the physial model with additional soure terms andspeial boundary onditions that permit omparison with the apriori determined so-lution. Manufatured solutions should be hosen to be smooth analytial funtionswith smooth derivatives. Care must be taken to ensure that no single term in thegoverning equation dominates any other term. Realizable solutions should be alsobe used. For example, if the problem inludes water �ow, the manufatured solutionshould not inlude temperatures for frozen or boiling water. Sine MMS requires theability to inlude arbitrary soure terms, initial onditions and boundary onditions,it must be possible to inlude the spei� form of the manufatured solution in theode. MMS is thus a ode intrusive methodology and annot be used for blak boxanalysis. MMS is prediated on having smooth solutions, the analysis of non-smoothsolutions (shok-waves, material interfaes, et.) is an open researh issue.While MMS was seriously onsidered as a veri�ation tehnique for this hapter,as a methodology it is still very young, and hene there are few introdutory examplesin the literature to illustrate its use. Instead, this hapter fouses on the use of exatsolutions for veri�ation whih has a long history and onviningly demonstrates adegree of on�dene for the MOOSE framework. Simulation errors may be di�ult131



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringto detet simply beause there may be no other existing models and no physial datato ompare with. The on�dene developed in this hapter through simple exampleswill provide the foundation on whih the results for the next hapter will be laid.Surveys of veri�ation tehniques are presented by [136, 139℄.4.1 Veri�ation versus ValidationVeri�ation and validation proedures provide a set of tools and methodologies forbuilding on�dene in omputational simulations. In ommon usage the words ver-i�ation and validation are synonymous; however, in urrent engineering usage theyhave very di�erent meanings. There are no standardized meanings for veri�ationand validation, this setion presents de�nitions of these terms based on [97, 136, 139℄.Veri�ation asks questions related to the mathematis, omputer siene and soft-ware engineering as they apply to a simulation's implementation. Veri�ation of amodel an be addressed entirely though apriori tehniques and makes no onnetionbetween the model and any observable phenomena. A model whih is veri�ed is amodel whih has been shown to be internally onsistent, or whih follows the rulesof logi and mathematis in a rigorous, aepted and reproduible way. For somelasses of models a variety of well understood properties have been proven to be in-variant, for example the rate of hange of error ompared with redutions in meshsize. Demonstrating that a new model an reprodue these same invariant propertiesprovides evidene that weighs in favour of that model being veri�able.In ontrast, validation deals with the physis and engineering priniples of themodel and addresses the ability of the model to reprodue experimental data. Physialmodels are themselves open to interpretation and subjet to a variety of simplifyingassumptions, whih may or may not be appropriate. Validation has two main aspets:132



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringoneptual validation, the faithfulness to whih the implementation on a omputermirrors an aepted physial model, and results validation, the omparison of thesimulation's output with an appropriate referent to demonstrate that the model orsimulation an in fat support the intended use.A model that is veri�able but annot be validated is not very useful. This senarioan happen when the implementation is orret and onsistent, but a fundamentalphysial assumption is inorret. For example, assuming that some omponent in amodel is weightless may result in a veri�able model, but might not generate onviningreal world results. Similarly it might be possible to demonstrate that a partiularmodel an be validated for ertain ases even though the model fails veri�ation tests.This an indiate errors in the solver or mesh implementation.If a model is veri�ed, and validated for several ases then a ertain degree ofon�dene is established that in the future it will orretly predit results. Meetingboth onditions still only inreases the on�dene that the model is orret, it neverestablishes 100% orretness. The remainder of this hapter will fous on issuesentral to veri�ation, the next hapter implements a fairly detailed ase study of theMMaster Nulear Reator and provides some evidene of model validation.4.1.1 Issues Related to Veri�ationIn any simulation there are several typial soures of errors
• Physial Modeling Errors
• Disretization Errors
• Numerial Errors
• Programming Errors 133



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringPhysial modeling errors are those indued by the hoie of equations to model thesystem. Most physial models make a variety of assumptions and simpli�ations,whih fous the model on a phenomenon of interest, while ignoring terms whih are notof interest. Typial modeling simpli�ations might inlude fritionless media, the useof lumped masses or ontinuous quantities to model large numbers of small partiles,modeling a phenomenon like the advetion of �uid while ignoring the vortiity ofthat �uid, studying one and two dimensional representations of three dimensionalphenomena, the use of symmetrial models, and so on. Suh simpli�ations makeproblems tratable. So long as the impliations of simpli�ations are understood theyan be of great assistane.Disretization errors are those that are introdued when a physial model is on-verted into a omputerized model. Some physial problems an be solved throughlassial alulus. Programs like MAPLE or Mathematia are able to integrate on-tinuous funtions algebraially. Despite the many reent advanes in symboli solutionof physial problems, most simulation work is still done with numerial approxima-tions to derivatives. Numerial approximations to derivatives are normally derivedfrom an in�nite Taylor series, for whih only the most signi�ant, or lowest orderterms are retained. The terms whih are negleted beome part of the error. Anexample of how suh a system is derived is given in the next setion.Errors an also be the result of round o�, or the disritization of ontinuous quan-tities whih a omputer must undertake to represent �oating point numbers in binaryregisters. When an algorithm must repeatedly multiply and add several million indi-vidual registers together the mahine's inability to keep trak of the least signi�antbit in a �oating point number's representation will aumulate. Algorithms whih arewell designed an address these issues to a ertain degree.134



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringProgramming errors are the bane of any large projet and it is fair to suggest thatany software system will have some. Systemati errors are perhaps the simplest toidentify and orret, for example the software generates negative results instead ofpositive ones, or onsistently generates preditions that are 10% too low. Program-ming errors that ause a simulation to fail under ertain irumstanes are not nearlyso serious as programming errors that ause a software system to report inorretresults or worse even, orret results some of the time, and inorret results at othertimes.For many problems the time available to ompute the solution will provide theultimate limit. The modeler must often hoose between aeptable error introduedby disretization, and the amount of time they are willing to wait for this solution.A fast model that yields a result with an unertainty outside a pratial range is justas useless as a preise model that will yield an exat result too late to be of any use.4.1.2 Consisteny and ConvergeneFor a numerial sheme to be onsistent, the disretized equations must approah theoriginal partial di�erential equations in the limit as the element size approahes zero.For a stable numerial sheme errors due to round-o�, iterative trunation or othersimilar soures must not grow in the marhing diretion. This disussion of stability,onsisteny, and onvergene is taken from [70, 139℄.Convergene addresses the issue of whether the solution to the disretized equa-tions approahes the ontinuum solution of the partial di�erential equation in thelimit of dereasing element size. Convergene is addressed by Lax's equivalene theo-rem, whih states that given a properly-posed initial value problem and a onsistentnumerial sheme, stability is the neessary and su�ient ondition for onvergene.135



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringConsisteny then is a property of the disretization of the equations while onvergenedeals with the solution method of those equations.For veri�ation purposes it is onvenient to de�ne the disretization error as thedi�erene between the solution to the disretized equations and the solution to theoriginal partial di�erential equations.One approah to evaluate the trunation error for the example of a �nite di�erenesheme is to start with a Taylor series expansion of the solution variables. For example(see [139℄), onsider the funtion T (x) expanded about the point x0, the Taylor seriesexpansion an be written as
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= 0 (4.2)where α represents the onstant of thermal ondutivity. This equation an be dis-retized with �nite di�erenes using a forward di�erene in time and a entered seonddi�erene in spae, resulting in the simple expliit numerial sheme
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) (4.5)The di�erene between the original partial di�erential equation and the disretizedequation is the trunation error. This simple expliit sheme for the transient heatequation is onsistent sine the trunation error goes to zero as △x and △t go to zero.The formal order of auray of the sheme is �rst order in time and seond order inspae sine the leading terms ontain the fators △t and (△x)2.4.1.3 Measuring AurayThe observed order of auray is the auray omputed from ode output for agiven simulation or set of simulations. The observed order of auray an be adverselya�eted by mistakes in the omputer ode, solutions whih are not su�iently smooth,137



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringdefetive numerial algorithms and numerial solutions that are not in the asymptotimesh onvergene range. The asymptoti range is de�ned as the range of disretizationsizes where the lowest-order terms in the trunation error dominate.Supposing that an exat solution is known onsider a series expansion of thedisretization error in terms of hk, a measure of the element size on mesh level k.
DEk = fk − fexact = gph

p
k + HOT (4.6)where fk is the numerial solution on mesh k, gp is the oe�ient of the leadingerror term, and p is the observed order of auray. The main assumption is thatthe higher-order terms (HOT) are negligible, whih is equivalent to saying thesolutions are in the asymptoti range. In this ase, the disretization error equationfor a �ne mesh and a oarse mesh is
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2 (4.8)Sine the exat solution is known, the left-hand sides an be evaluated using thenumerial solution. Combining these two equations as follows
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringGiven an exat solution only two solutions are required to obtain the observedorder of auray. The observed order of auray is e�eted by round-o� and iterativeonvergene errors. Disretized forms of nonlinear equations an generally be solvedto within mahine round-o� error. Iterative proedures are often terminated early toredue omputational e�ort, alternatively diret sparse methods, as already disussed,an be used to avoid errors assoiated with iterative methods.4.2 Eletrostatis ProblemsThe �rst example presented here is an eletrostatis problem. Sine the MOOSE is aprototype framework it is oneivable that a well developed PSE might be fully menudriven and suggest appropriate formulas and onstants to the user in a problem on-text sensitive manner. Commerial tools with advaned user interfaes like FEMLABdo preisely this. However, as mentioned previously, the fous of this thesis is not onuser interfae development, but rather on a study of the PSE's essential omponentsand the methods required for the preise modeling of motion. Individual oneptualelements, as identi�ed in Chapter 3 will be highlighted and their relevane to the ur-rent problem mentioned. This �rst example is desribed with some additional detailsto give a lear idea of what level of interation with the MOOSE is required, subse-quent examples will be less exhaustive in the way they detail the solution proess.The details of the losed form representation were taken from [108℄.This model omputes the eletri �eld generated by a pair of wires bent into asquare domain of dimension L × L. From lassial eletrodynamis the eletrialpotential U(x) satis�es Poisson's PDE
▽2U(x) = −4πρ(x) (4.11)139
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0V

100V

Figure 4.1: Eletro-Statis ModelWhere ρ(x) is the harge density at the spatial loation. The above representationis the steady state ase so there is no time dependene. In harge free regions where
ρ(x) = 0 the salar potential satis�es Laplae's equation:

▽2U(x) = 0 (4.12)In two dimensional retangular oordinates it takes the form
∂2U(x, y)

∂x2
+
∂2U(x, y)

∂y2
= 0 (4.13)4.2.1 Analyti SolutionTo derive an analytial solution to Laplae's equation, using the method of separationof variables, �rst assume that the problem is the produt of independent funtions of

X and Y
U(x, y) = X(x)Y (y) (4.14)Beause X(x) is a funtion of only x and Y (y) of only y, the derivatives are140



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringordinary instead of partial. Sine X(x) and Y (y) are assumed to be independent, theonly way this equation an be valid for all values of x and y is for eah term to beequal to a onstant
d2X(x)/dx2

X(x)
= −d

2Y (y)/dy2

Y (y)
= k2 (4.15)The hoie of sign for the onstant mathes the boundary onditions and givesperiodi behaviour in X, but not in Y . Solutions for X and Y  are

X(x) = Asin(kx) +Bcos(kx) (4.16)
Y (y) = Ceky +De−ky (4.17)The x = 0 boundary ondition an be met only if B = 0. The x = L boundaryonditions an be met only for values of k for whih

k = L = nπ , n = 1, 2, 3, ...for eah value of n there is a solution for X that is
Xn(x) = Ansin

(nπ
L
x
) (4.18)For eah value of kn whih satis�es the x boundary onditions, the y solution Y (y)must satisfy the boundary onditions U(x, y = 0) = 0. This requires D = −C and so

Yn(y) = C
(
ekny − e−kny

)
≡ 2Csinh

(nπ
L
y
) (4.19)In this ase the priniple of linear superposition holds and this means that the141
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U(x, y) =

∞∑

n=1

Ensin
(nπ
L
x
)
sinh

(nπ
L
y
) (4.20)The En values are arbitrary onstants and are �xed by requiring the solution tosatisfy the remaining boundary ondition at y = L. For this example the boundaryondition is U(x, L) = 100V , so

∞∑

n=1

Ensin
(nπ
L
x
)
sinh (nπ) = 100V (4.21)The potential for any point in the spae is

U(x, y) =
∞∑

n=1,3,5,...

400

nπ
sin

(nπx
L

) sinh (nπy/L)

sinh (nπ)
(4.22)When evaluating the analyti term the sinh() funtion may over�ow for largevalues of n. Some of these over�ows an be avoided by expressing the quotient of thetwo hyperboli sine funtions in terms of exponentials

sinh (nπy/L)

sinh (nπ)
=
enπ(y/L−1) − e−nπ(y/L+1)

1 − e−2nπ
(4.23)4.2.2 Finite Di�erene SolutionTo formulate this problem and its boundary onditions in the MOOSE is straightfor-ward. The user follows the sequene of steps:1. Create a data struture with 1 element U, to store the eletrial potential.2. Create 3 ell types(a) A harge free ell 142



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(b) A 100 Volt potential ell() A 0 Volt potential ell3. Create equations for eah ell type(a) Equations are equivalent exept for the −4πρ(x) term4. Draw the geometry for the problem5. Create the solver program whih initializes the problem, solves it, and plots it.Creating the data struture to be solved for is very simple. The data struture editoris launhed from the MOOSE's edit menu, a single entry �U� needs to be added tothe new struture, and the struture needs to be saved with a simple name, likeestatis_pdef.Cells are reated in a similar manner, the ell editor is launhed from the MOOSE'sedit menu, the 3 ells need to eah have 2 �elds de�ned, their data struture, andwhat equations to use.The equation syntax for the MOOSE is quite simple for this problem. Throughthe user interfae a text editor an be launhed and the Laplaian equation an bewritten as:PDEs:=[[LAPL(U)=0,U℄℄;The MOOSE adopts MAPLE syntax for this ase, the variable PDEs is spei�ed tothe MOOSE framework as a list of pairs. Eah pair in the list onsists of a symboliexpression of one of the PDEs, in this ase LAPL(U)=0, followed by the name of thevariable to be solved for, in this ase U. This expression an be though of as de�ninga row of the matrix, by speifying the variable the user is larifying whih symbol isto represent the diagonal in the matrix. 143



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe 100 volt boundary onditions is expressed simply as:PDEs:=[[U=100,U℄℄;This expression e�etively solves a formula to generate a boundary ondition. Itsimilarly de�nes a list of pairs, the �rst entry in the pair is an equation, the seondentry spei�es the symbol assoiated with the matrix diagonal for the equation. TheMOOSE framework does not make a speial distintion between boundary onditionsand PDEs. It is up to the model designer to ensure that a simulation domain isadequately spei�ed.The zero volt boundary ondition is similar to the 100 volt boundary ondition.Eah equation should be assoiated with its respetive ell type, this is managedthrough the MOOSE ell editor. Finally a solver program is needed. The basi solverprogram is summarized in pseudo ode as Algorithm 1. All of the other details ofmatrix reation, and equation interpretation are handled by the MOOSE framework.Algorithm 1 Pseudo Code for Eletrostatis Solver// inlude MOOSE definitionsmain(){ Initialize_Model(xdim=100,ydim=100, Copy=1, Equation_Group=1);solverdr_solve(Copy=1, Equation_Group=1);html_figure(title='E-Field',variable=U);}
Notie in Algorithm 1 both the opy and the equation group must be spei�ed.Reall from the disussion in the previous hapter that it is possible to speify multipleopies, and multiple model group members. For a steady state problem only a single144



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringopy is needed and only a single equation set is used. In the next transient examplemultiple opies and equation groups will be used.
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Figure 4.2: Errors Plotted Against Mesh Re�nementsFor the sake of omparison the 2-norm of the error is used, here de�ned as
‖e‖2 =

√√√√ 1

N
·

N∑

i=1

(exacti −measuredi)
2 (4.24)By examining the error for various mesh resolutions it is possible to omputethe observed order of the funtion as disussed in setion 4.1.3. For this problemthe point at whih the 0V boundary ondition meets with 100V boundary onditionreates di�ulties for the model. This illustrates the importane of using the 2-norm. If the in�nity norm is used to ompare errors, the error in the region of thisloalized disontinuity will dominate the problem. The 2-norm however provides abetter measure of global error, and is thus a more representative way to ompare the145



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringanalytial and �nite di�erene solutions. If the 2-norm is plotted against the meshre�nement fator then a straight line results as in Figure 4.2. As the mesh re�nementinreases the line better approahes the ideal, the observed auray is measured tobe 2.01, whih losely mathes the theoretial expetation of 2.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering4.3 Heat Flow in a Metal BarHeat di�usion as it evolves over time an be represented in terms of a paraboliPDE. Heat �ows from regions of high temperature to those of low temperature. Theanalytial part of this presentation is taken from [34, 108℄. The rate of heat �owthrough some material is proportional to the gradient of the temperature T withinthe material
H = −K ▽ T (x, t)where K  is the thermal ondutivity of the material.
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Figure 4.4: An Insulated Metalli Bar with Either End in an Ie BathThe total amount of heat energy Q(t) in the material at any one time is propor-tional to the integral of the temperature over the volume of the material
Q(t) =

∫
dxCρT (x, t) (4.25)where C is the spei� heat and ρ the density of the material. Beause energy isonserved, the rate of derease of Q with time must equal the amount of heat �owingout of the material. When this energy balane is struk and the divergene theoremapplied, the heat equation is the result 147
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∂T (x, t)

∂t
=

K

Cρ
∇2T (x, t) (4.26)assuming that the material has a onstant density ρ. Equation 4.26 is a paraboliPDE with spae and time as independent variables. The setup of this problem impliesthat there is no temperature variation in diretions perpendiular to the bar, and sothere is only one spatial oordinate to onsider for this PDE. The one dimensionalversion is written

∂T (x, t)

∂t
=

K

Cρ

∂T (x, t)

∂x2
(4.27)The initial temperature of the bar is given in addition to a pair of boundaryonditions

T (x, t = 0) = 100

T (x = 0, t) = T (x = L, t) = 04.3.1 Analyti SolutionThe analyti approah is similar to the one presented in the previous example and isbased on the assumption that a solution exists in whih the time and spae depen-denies our as separate funtions. The resulting pair of ODEs is
d2X(x)

dx2
+ λ2X(x) = 0 (4.28)
148



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering
d2Θ(t)

dt2
+ λ2 K

Cρ
Θ(t) = 0 (4.29)where λ is a onstant to be determined. The boundary onditions at either end ofthe rod suggest that the solution to the spatially dependent funtion X(x) is

X(x) = Asin(λx) (4.30)The requirement that the temperature vanish at x = L determines the possiblevalues for the onstant λ
sin(λL) = 0 ⇒ λ = λn =

2π

L
, n = 1, 2, 3, ...

Θ(t) = e−λ2
nt/Cρ (4.31)In this ase the priniple of linear superposition holds. A solution using all thevalues of n an be written as

T (x, t) =
∞∑

n=1

Ansin (λnx) e
−λ2

nt/Cρ (4.32)where n an be any odd integer and An is an arbitrary onstant. The Fourier expansionoe�ients are determined by the initial ondition that at time t = 0 the entire barhas a temperature of T = 100. The full solution is an in�nite series
T (x, t) =

∞∑

n=1.3,5,...

4T0

nπ
e−n2π2Kt/(L2Cρ)sin

(nπx
L

) (4.33)
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering4.3.2 Finite Di�erene SolutionWhile the previous problem solved the �nite di�erene solution on a losed two dimen-sional mesh this is not neessary to solve the paraboli problem numerially. Sinethere is no prede�ned limit to the time that one might wish to simulate and sine thedependene of the solution �ows in one diretion only, the modeling domain an berepresented by two one dimensional vetors.In terms of the MOOSE framework this means that two opies of the simulationsolution vetor and matrix are needed. For this example a opy index and a distintequation group number are needed. Eah solution opy is assoiated with a singlesolution vetor; the equation group determines what operation is applied to thatvetor. In the previous example this distintion was unimportant sine there wasonly one solution vetor, and one operation applied to that solution. The solutionproedure for the MOOSE framework is similar to the previous example:1. Create a data struture with 1 element T, to store the omputed temperature2. Create 2 ell types(a) A variable temperature ell(b) A 0 degrees Celsius ell3. Create equations for eah ell type4. Draw the geometry for the problem5. Create the solver program whih initializes the problem, solves it, and plots it.For this problem the sup[℄ operator is used. This operator indiates that a supersriptis being employed, where the index of the supersript refers to values derived from150



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringanother time frame, in this ase represented by a separate opy of the solution vetor.The formulation in setion 4.1.3 uses supersripts to indiate di�erent time referenes,this is where the sup[℄ notation was derived from.Algorithm 2 Transient PDEsif eq_grp = 1thenPDEs:=[ [T=sup[T,2℄+h*K/(C*p)*LAPL(T), T℄ ℄;elif eq_grp = 2thenPDEs:=[ [T=sup[T,1℄+h*K/(C*p)*LAPL(T), T℄ ℄;end if;The PDEs in Algorithm 2 and variable pairs follow the analytial spei�ation ofthe problem. The equation T=sup[T,2℄+h*K/(C*p)*LAPL(T), should be read T 1 =

T 2 + h · K/ (C · p) · ▽2T 1. Notie how in this ase speifying T as the variableto be solved for makes a di�erene, sine there are other variables in the equationwhih are simply onstants. The onstants will appear symbolially in the matrixgenerator ode, the user an de�ne their values through global variable de�nitions.The variables whih are not spei�ally identi�ed by supersripts are inferred to applyto the urrent solution vetor opy. This equation should be ompared with equation4.3 and equation 4.26.For this example the solution mehanism always applies equation group 1 to vetoropy 1, and equation group 2 to vetor opy 2. The preise solution regime is notpredetermined by the MOOSE framework, this solution mehanism is presented as atypial formulation. The solution methodology follows that desribed in Chapter 3,where a pair of vetors are onstruted and a pair of equation are spei�ed and usedin alternating suession. Notie that the equations in group 1 refer by supersriptsto values derived in opy 2. Similarly equations in group 2 refer to values derived151



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringfrom opy 1.Reall that the equations spei�ed by the user are not applied diretly, but ratherthey are translated by the MOOSE framework into a matrix representing a system ofequations whih an be solved by a variety of linear solvers whih are ompatible withthe framework. Also reall that part of the work that the MOOSE framework does isto seamlessly solve issues related to moving meshes as they may our in a transient�nite di�erene simulation. Notie that the above equations only refer abstratly tovariables and vetor opies, the MOOSE framework handles the details of translatingthese PDEs between the numerial spae of the linear solver, and the representativespae of the spatial model.These equations are impliit in spae and expliit in time, as ompared with theequation 4.3 whih is expliit in both spae and time. Using a formulation whih isimpliit in spae provides better stability properties at the ost of a more omplexsolution method, as was disussed in the previous hapters. By using a two vetorimplementation the memory onsumption of the solver remains the same no matterhow muh time is simulated, and any number of time steps an be modeled.Algorithm 3 Transient solver For Heat EquationInitialize_Model(xdim=1,ydim=0.1, Copy=1, Equation_Group=1);Initialize_Model(xdim=1,ydim=0.1, Copy=2, Equation_Group=2);write_all(Copy=1, Variable=T, 100); // set the initial temperaturet=0;while(t < 100) {solverdr_solve(Copy=2, Equation_Group=2);solverdr_solve(Copy=1, Equation_Group=2);t=t+2*h;}
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe solver program is similar to the previous one, exept that it must de�ne aninitial ondition, and apply a sequene of steps to solve the problem. The user anhange the step size h during the ourse of this exeution using step size doublingas disussed in hapter 2, or any other step size estimation tehnique, although odefor adjusting the step size is not presented in this example. The example ode inalgorithm 3 shows how the two separate model opies are initialized and solved for.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringdi�erent type, so the initial segments of these urves where the problem performspoorly angle in opposite diretions.4.4 Wave on a StringThe wave equation is an example of a hyperboli PDE. This thesis has not plaed muhemphasis on the study of hyperboli PDEs, however the MOOSE framework is apableof handling them as this example will illustrate. Hyperboli PDEs have their ownspeial set of di�ulties, and while the MOOSE framework supports the fundamentalprimitives neessary for their implementation modeling hyperboli funtions is noturrently one of the frameworks' strengths. The analytial solution is partially derivedfrom [108℄.Consider a string of length l, tied down at both ends . The string has a onstantdensity per unit length ρ, a onstant tension τ , and is subjet to neither frition norgravitational fores. The vertial displaement of the string from its rest position isdesribed by a funtion of two variables y(x, t), where x is the horizontal loationalong the string and t the time. The string is only displaed in the vertial diretion.To derive a linear equation of motion it is assumed that the displaement and slopeof the string are small. An in�nitesimal setion ∆x of the string is isolated. FromNewton's equations the seond law of motion indiates that the sum of the vertialfores on the string setion must equal the mass times the vertial aeleration of thesetion
∑

Fy = ρ△ x
∂2y

∂t2
(4.34)the fores are the omponents of the string's tension τ . The vertial omponents of154



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthe tension on eah end of the segment hange as the angle of the string hanges, andthose omponents are obtained by relating the slope of the string to ∂y
∂x

∑
Fy = τ

[(
∂y

∂x

)

x+∆x

−
(
∂y

∂x

)

x

]
= τ

∂2y

∂x2
(4.35)

∂2y(x, t)

∂x2
=

1

c2
∂2y(x, t)

∂t2
(4.36)The propagation speed c is denoted by

c =
√
τ/ρ (4.37)Sine both ends of the string are tied down, the boundary onditions are that thedisplaements must vanish for all times at the end of the string. The initial onditionat t = 0 is represented by the pluking of the right side of the string. The pluking ofthe string is modeled by the following funtion

y(x, t = 0) =






1.25x/l for x ≤ 0.8l

5.0(1 − x/l) for x > 0.8l
(4.38)Beause the model uses a seond order equation in time, a seond initial onditionis needed to determine the solution. The seond initial ondition is that the plukedstring is released from rest

∂y

∂t
(x, t = 0) = 0
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering4.4.1 Analyti SolutionThe analyti solution is obtained via separation of variables. As before the waveequation is assumed to be a produt of a funtion of two funtions, one in spae, theother in time.
y(x, t) = X(x)T (t) (4.39)Solutions to the following two ODEs are needed,
d2T (t)

dt2
+ ω2T (t) = 0 (4.40)

d2X(x)

dt2
+ k2X(x) = 0 (4.41)Where k = ω

c
. The angular frequeny ω and the wave vetor k are determined bydemanding that the solutions satisfy the boundary ondition whih spei�es that thestring is attahed at both ends.The orresponding solution for the time equation is

Tn(t) = Cnsin(ωnt) +Dncos(ωnt) (4.42)
ωn = nω0

ω0 = ck0 =
2πc

lThe preeding solutions are the nth normal modes where by de�nition, eah mode156



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringosillates at a single frequeny. The initial ondition requires the Cn values to be zero.For a string with its ends �xed and initially at rest, there are solutions of the waveequation of the form
y(x, t) =

∞∑

n=1

Bnsin(knx)cos(ωnt) (4.43)The Fourier oe�ients Bn are determined by using the �rst initial onditionswhih desribes how the wave is pluked. They are found to be
Bn = 12.5

sin(0.8πn)

n2π2
(4.44)The �nal series is

y(x, t) =
∞∑

n=1

12.5
sin(0.8πn)

n2π2
sin(πnx/l)cos(

√
τρπnt/l) (4.45)
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Figure 4.6: Solutions to the Wave on a String ProblemHyperboli problems tend to su�er from numerial errors in ways quite di�erentfrom ellipti or paraboli problems. The vast literature on �uid dynamis and teh-158



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringniques for solving problems related to the Naiver Stokes equations are a testamentto this. Hyperboli solutions an exhibit wave fronts and other sharp disontinuitieswhih are di�ult to model espeially over many iterations.Algorithm 4 Hyperboli PDEs for the Wave on a String Problemif eq_grp = 1thenPDEs:=[[Y=2*sup[Y,3℄-sup[Y,2℄+h*h*Tau/p*LAPL(sup[Y,3℄), Y℄ ℄;elif eq_grp = 2thenPDEs:=[[Y=2*sup[Y,1℄-sup[Y,3℄+h*h*Tau/p*LAPL(sup[Y,1℄), Y℄ ℄;elif eq_grp = 3thenPDEs:=[ [Y=2*sup[Y,2℄-sup[Y,1℄+h*h*Tau/p*LAPL(sup[Y,2℄), Y℄ ℄;elif eq_grp = 4thenPDEs:=[ [Y=sup[Y,1℄+.5*h*h*Tau/p*LAPL(sup[Y,1℄), Y℄ ℄;end if;
The PDEs used are presented in their MOOSE notation form in algorithm 4. Theimplementation is seond order in spae and in time, a simple expliit formulation wasused. The heat di�usion problem, disussed in the previous setion, used two equationgroups and two vetor opies to model the transient phenomena of heat di�usion. Forthe wave equation three vetor opies are used with four equation groups.Three vetor opies are needed to represent a entered �nite di�erene formulationin time. Eah one of the vetor opies represents a di�erent instane in time, and theset of three equation groups must be solved in a yli fashion similar to the solutionstrategy used in the preeding example.The �rst three equation groups are similar to the two equation groups used tosolve the heat equation, exept that eah group refers to variables in two other vetoropies. The fourth equation group is a speial ase whih allows the simulation to159



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringbe initialized. The fourth equation group assumes that the initial ondition has beenstored in the vetor whih represents the �rst simulation opy. It uses a disretizationwhih is �rst order in time to ompute the string position for the seond vetor opy.The �rst initial ondition desribes the shape of the string immediately after beingpluked and provides a basi triangle wave form for the string. This initial onditionwas oded inside the main solver program, although in priniple it ould have been alsorepresented by a �fth equation group. Using a separate equation group to initialize amodel was disussed abstratly in the third hapter.The simulation results are presented in Table 4.6 for six snapshots of the evolutionof the simulation. For this simulation eah time step was equivalent to 1/1000th ofa seond, the �rst �gure in the table is omputed after .305 seonds have elapsedand shows the vibrating string in the position that it was in when the simulationwas started both for the analytial ase, the solid line, as well as the �nite di�erenemodel. The string retains a triangle shape throughout its vibration beause the modelis fritionless. Eah subsequent �gure shows the evolution of the model in .005 seondinrements. As this model progresses in time its shape will tend to deteriorate and itwill diverge further and further from the orret solution. Even in the �rst 1/3rd of aseond irregularities in the solution are beginning to appear, espeially near the wavefront, and along the trailing edge of the wave.4.5 Veri�ation of Pathed Mesh Linking RulesA ritial problem in building the pathed mesh matrix generation ode was ensuringthat the mesh linkages do not introdue exessive errors into the eigenvalue solution.For the purposes of veri�ation a series of steady state models were developed andtested at various resolutions using a variety of test riteria. This setion will present160



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtwo representative tests whih illustrate the degree to whih the onservation rulesare able to orret errors, and under what irumstanes. Error orretions ahievedthrough onservation rules are highly problem dependent, although ertain trendsremain onsistent aross most tests. During the ourse of the development of theMOOSE libraries hundreds of test ases were studied in the attempt to establish asimple and meaningful rule-set. The rules desribed at the end of Chapter 3 will beillustrated in this setion with two examples.4.5.1 Geometri Conservation Rule Veri�ationThe �rst example is based on the eletrostatis problem presented earlier in thishapter. This problem is used to illustrate the geometri requirements of linked meshesby examining the errors indued by linking two meshes of di�erent resolution.
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Figure 4.7: Partitioned Eletrostati ProblemFigure 4.7 shows a mesh onstrution whih uses a doubly re�ned mesh near thetop 1/3rd of the problem losest to the 100V potential and a less re�ned mesh for therest of the problem. The intuition behind suh a mesh partition is that the solutionhas a higher gradient in the top portion of the mesh, and hene requires more points161



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringto aurately model its behaviour. Errors whih result from the mesh onnetionstrategy will be ompared with the losed form solution. Errors for individual pointsare weighted by the ell area, so that errors in larger ells have a bigger impat thanerrors in smaller ells. Top Mesh 18x6Bottom Mesh Total Linear NonLinear ConservationDimensions Points Errors Errors Errors18x12 324 1.53 1.53 1.5315x10 258 10.2 10.4 1.6713x9 225 22.9 19.0 1.6710x7 178 53.9 41.7 2.079x6 162 66.1 55.7 2.586x5 136 116.9 107.9 4.72Top Mesh 36x12Bottom Mesh Total Linear NonLinear ConservationDimensions Points Errors Errors Errors36x24 1296 .41 .41 .4130x20 1032 5.13 4.99 .4127x18 918 10.0 8.31 .4221x14 726 24.5 18.7 .5518x12 648 33.0 27.5 .7414x9 558 54.6 48.8 1.10Table 4.1: Mesh Connetion Errors for Two ResolutionsTable 4.1 tabulates error measurements for two di�erent starting resolutions for theeletrostatis problem. The �rst olumn spei�es the mesh dimensions for the bottom2/3rds of the mesh. The top 1/3rd of the mesh remains onstant in dimensions forboth tests. The seond olumn gives a ount of the total number of points in the mesh.The next three olumns tabulate measured errors for three di�erent mesh onnetionstrategies. Linear errors are those errors measured when only linear interpolationis used to onnet meshes. NonLinear errors are the errors measured when only162



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringnon-linear interpolation methods are used to onnet the mesh. Reall from theprevious hapter that non-linear methods alone will only produe reasonable resultswhen meshes are out of alignment, not when mesh ells on either side of a boundaryare of di�erent sizes. This test learly illustrates this phenomena. The �nal olumnshows the measured error when the geometri onservation rule is used to link meshes.It should be lear that for both examples even when a large redution in the numberof points is used to model the simulation domain, the impat on the measured errorfor the onservation geometri rule is very moderate.It is interesting to ompare several ases. Take for example the 36x36 ase where648 points are used to ompute a result. The error generated by this formulationwithout onservation using non-linear interpolation is an order of magnitude worsethan the error generated in the 18x18 ase using 324 points with no speial re�ne-ment or onnetion strategies. This ase shows that haphazard mesh interonnetionsmay not produe results whih are any better than those whih an be derived withstandard regular meshes.It is important to keep in mind that this example problem is onstruted speif-ially to highlight a situation where non-linear interpolation alone fails to providesatisfying results for a simple mesh interonnetion strategy. For this problem on-servation was used to orret errors whih appeared not only between the top andbottom meshes, but also between the bottom mesh and the 0V boundary onditionmesh, whih was modeled at the same resolution as the top mesh. From the previousdisussion on the eletrostatis problem errors tend to be high along the left and right0V boundaries. As the next set of test results indiates, geometri issues are not ne-essarily the primary onern for ertain models sine the user an arbitrarily ontrolmesh depth. Other model details, in partiular, moving material disontinuities, maybe part of the problem de�nition and more di�ult to ompensate for.163



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering4.5.2 Material Disontinuity Conservation Rule Veri�ationIn situations where material disontinuities must be dealt with along mesh boundarieserrors an arise when poor estimates for di�usion onstants are used. As disussed inthe implementation hapter, these errors an be avoided by seleting the diretion forwhih the onservation rule is applied. For this example a two dimensional eigenvalueproblem is hosen based on the neutron di�usion problem introdued in hapter 2.Although no losed form solutions exist for the two dimensional problem, a simpli�edone dimensional problem taken from [53℄ illustrates some onepts.A simpli�ed version of the transient neutron di�usion equation 2.7 whih negletsthe delayed preursor soure terms and is expressed in only one spatial dimension andwith only one energy group an be written as
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+ Σaφ(x, t) = νΣfφ(x, t) (4.46)As with the previous problems in this hapter, separation of variables is used

φ (x, t) = ψ(x)T (t) (4.47)It is possible to rearrange equation 4.46 by substituting equation 4.47 to derive
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d2ψ

dx2
+B2

nψ (x) = 0 (4.50)has symmetri solutions for
ψn = cos (Bnx) (4.51)
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(nπ
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)2

, n = 1, 3, 5, ... (4.52)where λn is hosen to be
λ = vΣa + vDB2

n − vνΣf ≡ λn , n = 1, 3, 5, ... (4.53)The fundamental mode for the idealized slab reator is a rough approximation ofthe neutron �ux shape whih more omplex problems have. The shape of the �uxpro�le for the slab reator is haraterized by the osine
φ(x) = cos

(πx
a

) (4.54)Charateristis of the eigenvalue steady state neutron di�usion solution involvesearhing for the lowest eigenvalue. The orresponding eigenvetor is symmetri,all elements of the vetor are the same sign, normally represented as positive. Themaximum �ux value ours roughly in the enter of the problem domain, the minimum�ux value is normally zero and is normally loated at the edge of the problem domainand an be represented by a �xed boundary ondition.A hypothetial retangular ore is modeled in two dimensions shown in �gure 4.8.165
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−▽ ·D▽ φ+ Σr =

1

k
Σfφ (4.55)The ross setion and reation rate onstants were hosen in an arti�ial way sothat the eigenvalue solution would be exatly 1. One edge of the ore is bounded bya mesh disontinuity. The mesh is divided in two setions, but the top and bottommesh setions are of equal resolution. A wrap around geometry is used to onnet thenorth and south edges of the mesh as well as the east and west edges of the mesh asillustrated in Figure 4.8.
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Figure 4.8: Partitioned Moving Mesh with Wrap Around GeometryWrap around geometry settings are onvenient for some problems whih involvemoving meshes sine they allow ells whih leave one side of the simulation domainto re-enter on the opposite side. It is also possible to squash and extend intermediatemesh omponents to failitate motion, however, wrap around geometries provide thesimplest implementation for moving mesh omponents. For this example repositioningthe mesh does not atually hange the problem. While no losed form solution exists166



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringfor this problem it should be obvious that if the mesh interonnetion strategy is ideal,shifting the lower mesh by any fration should not hange the fundamental eigenvalue.The eigenvalue omputed when the ells in the top and bottom mesh are aligned isonsidered to be orret, and any deviation whih is a onsequene of shifting themesh is onsidered to be an error.
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Figure 4.9: Motion ErrorFigure 4.9 illustrates the deviation in omputed eigenvalues for two mesh on-netion strategies. The �rst strategy uses nonlinear interpolation alone, the seondstrategy uses onservation rules to avoid estimating di�usion onstants for ells whihmust handle material disontinuities. Nonlinear interpolation is used to onnet allother ells. This result is quite interesting sine at any given displaement for thelower mesh there will be no more than 4 estimated di�usion onstants, yet by esti-mating �ow through the use of onservation rules instead of the estimated onstantsan error redution for this problem of a fator of twenty is possible.167



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering4.6 DisussionThis hapter has presented a some basi theory behind veri�ation strategies om-bined with a olletion of problems whih illustrate how the MOOSE framework wasveri�ed. Closed form solutions provide a rigorous benhmark to ompare omputednumerial solutions against. Using losed form solutions to verify a simulation modelis somewhat limiting in the sense that only ertain problems an be studied in thisway.This hapter should also larify ertain questions related to the MOOSE frame-work's usage. Some of the examples presented in Chapter 3 were desribed in aneessarily abstrat terminology in order to apture the generality of the framework'sapabilities. Comparing the disussion in Chapter 3 with the simpli�ed onrete ex-amples in this hapter should illustrate how the MOOSE framework handles varioussimulation types.The veri�ation of the geometri onservation rule and the material disontinuityonservation rule presented in the previous two setions represents some of the testsperformed on the framework to verify its orret behavior. Any framework whih at-tempts to implement pathed moving meshes should be tested under at least similarirumstanes. The senarios presented in the preeding two setions are idealizedand only apply in ertain situations. When hoies must be made between the mate-rial disontinuity onservation rules and the geometri onservation rules, it is oftenbest to hoose in favour of satisfying the material disontinuity rules. This hoieis largely heuristi and to a ertain extent will be determined by the exat problemformulation. Con�its an arise suh that it is not possible to satisfy either the ma-terial disontinuity rule or the geometri rule. The rules also depend on the spei�geometry of the problem, the number of ells and the size of the ells.168



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe overall impat of using onservation rules in a realisti senario is presentedin the next hapter within the ontext of the rod insertion ase study. As will bedemonstrated, despite the potential for on�it in the rule-set, generally very gooderror redution an be ahieved.
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Chapter 5
Simulation Studies
This hapter presents a sequene of studies examining a fuel assembly insertion exper-iment, similar to the fuelling inident that ourred at the MMaster Nulear Reatorin January 1994. The January 1994 fuelling inident involved the insertion of a fuelassembly worth an estimated 24.8 mk1 over an estimated 20 seond period to a par-tially assembled ore. The ore had an initial keff of 0.983 and an initial power of13mW. The point kinetis models used at the time onluded that the best estimatepeak power was approximately 8.4 MW.This hapter desribes a sequene of related simulation appliation built with theMOOSE framework. The tehniques provided by the MOOSE are leveraged in thishapter for the development of a simulation study, as well as for the veri�ation ofthe MOOSE.The goal of this hapter is to onstrut a reasonably aurate two dimensionalapproximation of the refueling inident that will exeute within a reasonable periodof time. The �rst setion desribes the alibration and simulation setup that was used.The seond setion will explore numerial stability and auray issues using various1mk is a relative unit of measure orresponding to 1/1000th of keff , see [53℄ for a ompletedisussion of reativity measurements 170



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringapproximations. The third setion will present a series of transient simulations usingthe best solutions provided in the previous setions.The goal of these simulations is to generate a good solution in a short period oftime. Sine it is always possible to redue the size of time steps and inrease thenumber of ells used to model the senario an e�ort has been made to examine theoarsest approximations that remain onvining.5.1 Simulation ParametersThis setion disusses the various simulation parameters whih were used to on�gurethe reativity insertion model. Approximations, alibrations, and various simpli�a-tions to the general model are summarized.5.1.1 ApproximationsBeause the goal of this study is to examine the e�et of the use of moving gridson the transient neutron di�usion equation some latitude has been taken with a fewof the lassial simulation elements. The onlusions that are drawn regarding theMOOSE's methodology should apply equally well to a more rigorously on�guredsimulation whih makes fewer assumptions. The 1994 refueling inident aused severalof the data reorders to go o� their sales, so no atual measured data are availablefor omparing simulated peak power with the atual event.The most signi�ant approximation used in this study is that of examining a twodimensional view of the simulation senario rather than a full three dimensional view.Sine the priniple point of referene is the zero dimensional point kinetis study thetwo dimensional study is presented with some on�dene that it will provide moredetail and some additional insights into the spatial omponents of the reator ore.171



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringSeveral speial ore elements are not represented, inluding re�etors, the beryl-lium soures, and sample injetion points. Burn-up of the ore is treated in a verygeneral way. Cross setion onstants were omputed so that the burn-up of the orewas approximately uniform at around 25%.Cross Setion DataAlthough the simulation onstants were extrated from the WIMS data base, theWIMS transport odes were not used to either ollapse the onstant groups or togenerate onstant mixtures. A simpli�ed student WIMS data base was used. This69 group data base was originally ompiled by Jeremy Whitlok in 1992 [170℄. A 69group di�usion study for a simple ore geometry was run to generate a detailed �uxdistribution for the MNR. This �ux distribution was used to ollapse the 69 groupdata base into smaller groupings of 12, 8, 5, 4, 3 and 2 energy levels. This �uxspetrum and the loation of the top boundaries of the 12 energy group divisions isplotted in Figure 5.1.The energy group divisions are based on a tehnial doument [46℄ written bySimon Day, and orrespond roughly to energy group divisions used in MNR simula-tions today. Table 5.1 lists the 12 energy levels of the largest grouping, and showshow the smaller groups represent unions of the larger group divisions. Simulationsrun under the two group approximation orresponded with the other simulations bestwhen the 821000 eV upper boundary was used for its thermal group. The note in theleft olumn of the table refers to the disussion of the rationale of the seletion of theenergy boundary in Simon Day's tehnial doument2.2Simon Day provided a great deal of assistane in the development of the simpli�ed ross setionsused in this thesis. Simon reommended against using WIMS, the transport theory based rosssetion ollapsing tool used at the MNR, due to the amount of time that would have been requiredto understand it. Many thanks to him for his patiene and hours answering questions on these issuesand suggestions for developing simpli�ed, but reasonable alternative data.172



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.01  1  100  10000  1e+06

Approximate 69 Group Flux Distribution

12345678910
11

12

flux level
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe generation of multi-group onstants using a transport ode like WIMS an bean extremely di�ult and time onsuming task, and so it was avoided. In additionto not using a transport ode to ollapse the onstants simple weighted averages wereused to mix the ell onstants, and all materials were assumed to be at room temper-ature. Suh tehniques annot take ertain phenomena into aount, like quantumresonane e�ets, or temperature related Doppler shifts whih our for some materialmixtures and under ertain operating onditions, and so the onstants used for thisstudy have limited validity.The energy spetrum of delayed neutrons from thermal neutron indued �ssion ofU235 is the poorest known of all input data in reator alulations. Delayed neutronsare born at a lower energy than their prompt ounter parts. Doroshenko [50℄ disussesthe di�ulties in measuring the data as well as tehniques for approximating it an-alytially. For the experiments in this hapter it was roughly estimated that for theomposite delayed spetrum 20% of all neutrons are born above the .821 MeV thresh-old, 30% are born between .821MeV and .5MeV, the remaining 50% of the delayedneutrons are produed between the .5 MeV and 41 KeV.Despite the various approximations there is no reason to believe that the ross se-tional data used in this hapter is inappropriate for omparing simulation tehniques.Sine this study is an experimental one whih examines new numerial methods formodeling motion, fous was plaed on the relative auray of eah model, ratherthan on the preise orrespondene of the model with absolute measurements.5.1.2 CalibrationTo ompensate for errors introdued by the simpli�ed ell ollapsing tehniques andthe approximate two dimensional interpretations, models were designed so that eah174



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringpriniple feature ould be adjusted. Steady state models were used to hekpointvarious rod positions and the ore simulation was alibrated by adjusting ertainonstants. The hekpoints inlude1. Shim inserted 13%, fuel inserted 0%, keff = .9832. Shim inserted 13%, fuel inserted 100% keff = 1.009 + /− .00153. Shim inserted 100%, fuel inserted 100% keff = 0.9195The simulation is most sensitive to the maximum estimate of keff . While errorestimates in the low values for keff are ignored in this study, an error of about 10% inthe estimate of the worth of the fuel assembly is taken into aount, whih is re�etedin the seond alibration point. These errors are appliable in the alibration of thetransient model and are disussed in the next setion.Steady State CalibrationThe steady state simulation is alibrated in three di�erent ways. The worth of theshim rods is only approximately spei�ed for this problem and is ited as between75mk and 100mk in the MNR safety report, depending on fuel loading patterns, andfuel burn up. For these experiments 88mk was used as the insertion worth. Thepreise omposition of the shim rods was adjusted to alter their worth. In the twodimensional representation of the ore two shim rods are used to represent the 5 shimrods and one regulating rod that are present in the atual reator. The ross setionalonstants whih represent the shim rod omposition of 80% Ag, 15% In, 5% Cd areaveraged with a set of onstants whih replae AL for the materials whih wouldnormally absorb neutrons. The initial position of the shim rod is set at about 13%insertion, or 8 m. 175



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe worth of the inserted fuel assembly is alibrated by adjusting the burn upof the stationary fuel assemblies in the ore. This tehnique was hosen rather thandiretly adjusting the burn up of the inserted assembly to keep the experiments asuniform as possible. For eah test ase the inserted assembly, and the assembliesdiretly to its left and its right are set at 25% burn up. Sine the fous of many of thetests investigates the details of the interation between the moving fuel assembly andits neighbours it is important that the ross setions whih represent these omponentsremain �xed throughout all the tests. Calibrating the ore by adjusting the burn-upof the stationary assemblies redued the impat of alibration on the omparison oftests.Fine alibration of the initial steady state model was done using a �oating pointonstant fcal whih was multiplied by the �ssion spetrum term χg to adjust theoverall reativity of the fuel. The steady state version of the neutron di�usion equationinluding the alibration term is written as
−▽ ·Dg ▽ φg + ΣRgφg −
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νΣfg′φg′ (5.1)Calibrating a model using these various end point onditions is not very timeonsuming. The eigenvalue steady state problem for this model runs on a modest PCin under 60 seonds for the 5 group model so it is relatively easy to exeute severalvariations of the problem during the model alibration.The alibration algorithm uses a simple iterative solver whih examines the dif-ferenes between omputed eigenvalues for various rod and assembly positions andadjusts the alibration parameters aordingly. First the algorithm adjusts the shimrod omposition until it has ahieved a ertain degree of preision. The model al-ternately removes and inserts the shim rods heking the di�erene in the omputed176



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringeigenvalues for the 13% inserted position and the 100% inserted position.In the seond phase the algorithm adjusts the ore burn-up to set the reativity ofthe inserted fuel assembly. For this estimate the shim rods are withdrawn to the 13%insertion position so the fuel assembly worth is an be estimated. The alibrationfuntion yles bak and forth between these two phases, adjusting the shim worthand the inserted fuel assembly worth until both have ahieved the required degree ofauray. The alibration algorithm allows for a 1/2 mk error (0.05%) in the shimworth but only a .02 mk error (0.002%) in the fuel worth.Table 5.2 summarizes the ore burn-ups that were used to ahieve equality betweenthe various models as well as the fal parameter. These �gures indiate that theell ollapsing tehniques used to generated the various energy group onstants leadto some di�erenes between models derived at various energy groups. Comparisonbetween results taken from simulations performed at di�erent energy groups whihdi�er by an amount on the order of 10% will be understood to be the result of errorsindued by the ollapsing proedures and subsequent realibration.Total Energy Divisions Core Burn-up fcal2 33.97% 0.944034 27.28% 0.933918 28.27% 0.9421712 26.75% 0.94951Table 5.2: Core Burn-up and fal Adjustments
Transient CalibrationThe transient problem uses the same basi alibration points as the steady stateproblem, although sine the transient equations are somewhat more ompliated, inpartiular due to the inlusion of the delayed preursors and a non-zero bakground177



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringradiation soure term, it requires some extra adjustments. A sub-ritial reator orebehaves like an ampli�er with an ampli�ation fator of 1/ (1 − k) so the additionalneutrons inluded as part of the sub-ritial soure tend to hange the behaviourof the ore when it is lose to ritiality. In addition the small fration of delayedpreursors required for the ontrol of a ritial ore do not orrespond exatly withthe prompt neutrons modeled in the steady state simulation.A sub-ritial onstant �ux level is added to the simulation aross all energy groupsto model bakground radiation. The reator depends on sub-ritial neutrons pro-dued by the spontaneous �ssion of fuel byproduts as a neutron soure for startingthe reator. Mathematially this is represented by the inlusion of a onstant fatorin the transient version of the neutron di�usion equation. The transient version ofthe neutron di�usion equation an be solved for the ase where its �rst derivativeis zero and both the delayed preursor onentrations as well as the �ux levels aresolved for so that they balane the low power soure neutrons. This provides theinitial ondition for the transient alulation.Transient neutron di�usion equations inluding preursor terms and onstant soure
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0 = λi + fcal · βi
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νΣfg′φi (5.5)For an arbitrary low power soure the ion hamber an be adjusted so that itprodues a desired reading for the steady state sub-ritial ase. This is not the sameas the eigenvalue steady state problem sine preursor densities are inluded in thisomputation and the eigenvalue problem makes no assumptions about a onstantsoure, it rather only examines the reator's multipliation rate. The overall problemalibration is not very sensitive to the initial power, as will be disussed later.The most important alibration point for the transient alulation is the adjust-ment of the reator period, or rate of hange for the ase where the fuel assembly isfully inserted. Relying on the reativity alibrations performed for the steady statease gives a �rst order approximation of the orret alibration for the transient ase.When the fuel assembly is inserted ompletely, it is estimated that ρ3 is between.0075 and .012. The preise amount of exess reativity in the ore for the ase wherethe fuel assembly is fully inserted is quite di�ult to ompute, and is one of the keyunknowns in the simulation.The inhour equation is derived from a point kinetis model and expresses therelationship between the various deay onstants whih our as part of the delayedpreursor model and ore reativity, or rate of hange of power. A disussion ofthis equation and its assoiated onstants goes somewhat outside the sope of thishapter, the interested reader will �nd a omplete presentation in [53℄. This equationan be used to derive a relationship between reator period and exess reativity. Thisrelationship is plotted in Figure 5.2. It an be seen that the reator period varies quite3The symbol ρ signi�es reativity, de�ned as ρ = (keff − 1)/keff . The estimate for the rangeof ρ is based onversations with Simon Day and notes from Wm. J. Garland's original estimates ofreator period for this event. A broad range was hosen to apture the most likely extremes for thispartiular event. 179



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringrapidly if ρ < .01, but that for values of ρ > .012, the period hanges less rapidly.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringreator power for eah time step. The transient model is exeuted for a long enoughperiod that the delayed preursors have a su�ient amount of time to stabilize.The di�erene between the values omputed for fal in the steady state ase andthe transient ase is marginal, but important. Usually a shift of less than 0.05%in keff is required to orret the transient model. This orretion represents theneessary modi�ations to the equations whih are brought into play by the set ofdelayed preursor onstants.5.1.3 Numerial Simulation ParametersIn any simulation study the goal is typially to ahieve an aeptable level of preisionwith a minimal amount of e�ort. E�ort in this ase an be quanti�ed as either theamount of time required for a given simulation to exeute, or an be measured asthe di�ulty of the implementation of the simulation. Some errors may be tolerated,others may not be. Simulation parameters whih an be adjusted that have an impaton the exeution speed of the model as well as an impat on the preision of the modelare:
• The geometri mesh density
• The number of energy groups modeled
• The order of the time integration
• The step size used for time integrationHigher order approximations to spatial derivatives are not implemented by the MOOSEfor a variety of reasons, partly beause they ompliate the inter-mesh onnetionstrategies. The MOOSE uses seond order estimates of spatial derivatives.181



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringSimulation times inrease dramatially with denser meshes, so only a few di�erentmesh densities are studied. Some solutions are presented with regional mesh re�ne-ments. In partiular regional re�nement is helpful near material disontinuities, andnear leading and trailing regions of motion.The time integration problem is inherently sti� due to the broad range of timeonstants that must be modeled. The sti�ness of the problem suggests that a higherorder integration method may be neessary. To minimize stability problems assoiatedwith the CFL ondition an impliit third order multi-value time integration methodis used.A variety of step sizes were experimented with. Choosing a small step size for thetime integration routine provides better preision at the ost of taking more steps.This relationship is investigated in more detail later in this hapter.In the following setions eah of these parameters will be adjusted in the attemptto realize the most preise simulation setup for the problem at hand.5.1.4 Physial Simulation ParametersWhile ertain parameters of the fuel insertion problem were measurable, other pa-rameters are not well known. At the MMaster Nulear reator fuel assemblies areinserted by hand. An operator stands on the bridge whih is suspended above theore and uses a long hook to insert fuel assemblies. The insertion time in the inidentreport is spei�ed as 20 seonds, however sine this is not a mehanially ontrolledproess it may be subjet to a ertain amount of variation.The initial �ux of the reator ore is extremely low, and is not atually measurable.In priniple the sub-ritial power of the ore an be measured by omparing thedi�erene of the water inlet and outlet temperatures although if the ore has been182



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringshut down for a su�iently long time this di�erene may be too small to measurewith any auray. Sub-ritial ore heat is produed by a variety of proesses, andwill not neessarily be the result of nulear proesses whih produe neutrons. Thenumber of �ssioning neutrons present in the ore an be estimated by examining thedensity of ertain spontaneously �ssioning fuel by-produts, in partiular Pu240 isrelevant. Spontaneous �ssion rates for two main �ssion byproduts are
• Pu240 1.5e+3 n/(gram*s)
• U238 .018e+3 n/(grams*s)A 30% burned up HEU fuel assembly will have a ratio of 238U to 240Pu of approxi-mately 500 to 1 [89℄, or roughly .016 grams of Pu240 / assembly. Other sub-ritialneutron soures also exist inluding neutrons whih result from the ollision of gammarays and heavy water, although in the MNR the proportion of heavy water in theoolant is very small. The MNR also has a beryllium assembly whih an be ati-vated with a gamma soure to produe neutrons. The sub-ritial neutron soure isdi�ult to quantify with any degree of preision given the variety of proesses in-volved and the di�ulty in measuring them empirially. Its impat on the transientsimulation will be investigated later in this hapter.The MMaster nulear reator has a variety of demands plaed on it to maximize�ux at various regions within the ore for users of radiation sites and beam ports.Consequently the fuel loading patterns are adjusted regularly to try to meet theneeds of various researhers. The fuel loading pattern is therefore a omplex historyproblem, and no attempt has been made to represent partial assembly burn-up in thisstudy other than an overall ore burn-up of around 25%.The Ion hamber whih signals the high power trip inurs a delay between themeasurement of high power and the physial release of the shut down rods of about183



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering25ms. The shut down rods are released by utting o� the urrent to the eletrimagnets whih hold them in plae above the ore. In addition to delays inurred by thethe ion hamber's ontrol iruitry some time is required for the residual magnetismin the oils whih support the magnets to dissipate. Sine in this experiment the oreis in a super-ritial state with a very short period at the instant that the ore reahesits maximum power even a small variation in the preise value of this delay may havea large impat on the maximum power ahieved by the the ore.The power whih the ion hamber measures is not preisely proportional to themaximum power of the ore during the ourse of the exursion. Given the presene ofthe delayed preursors and the various e�ets of multiple energy groups as part of thetransient multi-dimensional study the shape of the �ux pro�le at sub-ritial powerwill not be the same as the shape of the �ux pro�le at maximum power. This suggestthat the position of the Ion hamber as modeled in the two dimensional study mayhave some impat on the auray of the study as well.The ion hamber itself is modeled rather simply. For disussion of radiation de-tetion instruments see [73, 103℄. Without delving too deeply into the physis of howsuh sensors work the assumption is made that the ion hamber generates a DC signalproportionate to the number of ion pairs generated at any given instant from ollisionwith high energy partiles. The generation of a single ion pair is understood to bethe result of a olliding partile loosing about 30-35 eV. For purposes of simulationan estimate of the total energy of all radioative partiles in a ell is omputed bytaking an average aross eah �ux group with an average energy level of at least 30eV, weighted by the average energy of that group.To satisfy safety regulations the shim rods must be fully inserted within 500ms.This orresponds to about 1/2 the aeleration due to gravity, the redution in rateis aused by the water in the ore. 184



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering5.1.5 The Simulation GeometryThe simulation was built on a grid with dimensions 41 x 40 ells, the reator oreused 19x15 ells, the remaining ells representing the moderator. The fuel within theore oupied a physial spae of approximately 60 m in height, 45 m in length,and 56 m in width. For the two-dimensional representation a 60 m height was usedwith a 48 m width. This gave a ell dimension of 2.5 m wide by 4 m long.
core4core2

ctrl1 ctrl2

core3core1

fuel1

Figure 5.3: Re�ned Mesh Showing Top of CoreFigure 5.3 shows a portion of the geometry whih fouses on the top of the oreand labels eah of the main regions. The shim rods were positioned so that whenfuel1 was fully inserted they divided the ore into 3 roughly equal segments, of width5 ells for ore1, 7 ells for ore2 + fuel1 + ore3, and 5 ells for ore4.The model was run at several di�erent resolutions. In the default resolution theore was represented by 15x19 ells within a simulation region of 41x40 ells. Higherresolutions whih were tested inlude 82x80 ells, 164x160 ells, 246x240 ells and328x320 ells for the most re�ned tests.For the onservation tests several mesh re�nements were applied. The regionsore2 and ore3 were further subdivided so that the ells immediately to the left and185



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringright of fuel1 ould be re�ned in the Y diretion as shown in Figure 5.3. All theells in fuel1 were similarly re�ned, with the added feature that the tips of fuel1 weredivided into 3 parts instead of just two. The oarsest mesh dimensions are 41x40 ellsa total of 1640 geometri positions used by the volume weighted tests. Under there�ned mesh strategy they are 38x40+3x80+4 for a total of 1764 ells in the oarsestgeometry, an inrease of less than 10%.5.2 Steady State Simulation ResultsThe steady state simulations presented in this setion fous on examining the reativ-ity hanges in the ore whih result from small adjustments in the position of the fuelrod. These simulation studies e�etively ompute global rate of hange of reativity inthe ore whih is haraterized by the inverse of the �rst eigenvalue. These simulationstudies ompute the �rst derivative of the power urve or the instantaneous neutronmultipliation rate of the ore whih does not onsider the delayed preursors andwhih would result from the tested fuel assembly insertion level.Several issues are addressed in this setion. Although by default the simulation isalibrated at several extreme points there will still be several measurable variationswhih our in between those points, it is the objet of this setion to use thesevariations to argue for the relative merits of various simulation methods. A two groupsimulation is used to ondut this part of the study. 4 di�erent mesh re�nements areompared, eah is twie as dense as its predeessor.The experiments in the following setions were designed to evaluate the merits ofthe onservation methods. Results omputed with moving onservative meshes areompared with motion modeled using a simple volume weighted tehnique. Volumeweighted methods are often used as a referene point due to their simpliity of im-186



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringplementation. The volume weighted method approximates intermediate rod positionsby using ells with averaged di�usion values. This methodology usually demonstratesunsatisfatory results for large mesh spaing, however the method is simple, it makessense in an intuitive way and it does not require any advaned mesh tehniques.5.2.1 Geometri Re�nement StudyThe mesh densities, inluding both the ore and the surrounding moderator are
• 41x40
• 82x80
• 164x160
• 328x320The simulation runs were done using two energy group divisions. For this portionof the study reativity was only measured for fully aligned ell positions for eah ofthe meshes in question. The most demanding geometry at 328x320 ells onsumedlose to the total amount of memory on the available hardware (about 1 Gigabyte)so this is the last re�nement that was attempted and it was only omputed for thereferene ase where assembly positions are aligned with the mesh. The reativityurve omputed at 328x320 ells is plotted in Figure 5.4. For this plot reativityinreases as the insertion distane approahes zero. The rest of this hapter willuse the onvention that negative insertion distanes mean that the rod, either fuelor ontrol, is withdrawn. A reativity greater than one indiates that the reatorpower is inreasing, a reativity of less than one indiates that the reator power isdereasing. 187
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringSine the reativity urves for eah mesh di�er by only very small amounts, ratherthan plotting the urves themselves, the di�erene between the urves are plotted.Figure 5.5 shows the di�erene between reativity measurements omputed at threedi�erent resolutions subtrated from the urve omputed at the highest resolution.This plot gives an indiation of what errors an be attributed to the mesh, and whaterrors may arise from other soures.The next sequene of tests ompares two tehniques for approximating motion ofthe fuel assembly labeled fuel1 in Figure 5.3. These tests measure the sequene ofinstantaneous reativities for a ontinuous sequene of fuel assembly positions. The�rst tehnique, labeled as onservation in the graphs, uses the re�ned mesh illustratedin Figure 5.3, and is based on the methodology desribed in Chapter 3. The seondtehnique, labeled volume weighted in the graphs, uses a standard Cartesian meshthe simple method of averaging ell onstants to approximate fuel assembly positionswhih annot be aurately represented on the mesh. Reativity urves for the oarsestmesh are plotted in Figure 5.6.Error estimates were omputed by taking the di�erene between the omputedsolution at arbitrary positions with an interpolated solution, where only mesh alignedalulations were used, and a fourth order interpolation funtion was used to estimatean ideal solution. This error estimation method makes the assumption that the �rstderivative of the reativity urve should be ontinuous. Any smooth interpolation oftrusted points should provide a good estimate of the reativity urve, although this isnot the same as an exat solution sine it hanges depending on the mesh resolution.The di�erenes for ideal solutions of various resolutions are illustrated in Figure 5.5.Unusual usping in the urve or sharp irregular hanges in the urve's diretion areassumed to be the results of numerial errors rather than physial artifats.189
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringThe relative reativity errors for 2 resolutions under the onservation methodol-ogy are plotted in Figure 5.7. These errors are alulated as the absolute di�erenebetween the ideal reativity solution and the omputed solution. Eah usp repre-sents the motion of the fuel assembly from one ell boundary to the next, so there areorrespondingly 4 times as many usps in the 164x160 resolution plot. Errors tend tobe largest at the beginning of the insertion and at the end of the insertion. When thetip of the fuel assembly is losely aligned with either edge of the ore this reates adeision on�it for the onservation algorithm sine it must deal with material dis-ontinuities on either side of a mesh boundary. As would be expeted, with reduedell size a redution in error is also observed.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

-60 -50 -40 -30 -20 -10  0

K
ef

f E
rr

or

Insertion Distance (cm)

Keff Errors for Volume Weighted Method

41x40 cells
164x160

Figure 5.8: Errors for the Volume Weighted MethodThe relative reativity errors for 2 resolutions under the standard ell onstantmixture sheme are plotted in Figure 5.8. These errors are omputed in the same wayas those presented in Figure 5.7. This urve has some features that are similar to those191



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringillustrated in Figure 5.7. As in the onservation plots, eah usp represents the motionof the fuel assembly from one ell boundary to the next, so they are orrespondingly4 times as many usps in the 164x160 resolution plot. The onservation geometryuses additional loalized re�nements so few and more regular usps are evident in theremixed plots.Both the volume weighted method and the onservation method have di�ultyestimating reativity in the middle of the ore. This an be explained by observingthat the rate of hange of reativity, as illustrated in Figure 5.4 is greatest when thefuel assembly is 1/2 way inserted. The relative error plots for the volume weightedmethod tend to be simpler urves with smoother shapes than those generated by theonservation method. This is due to the more obvious implementation of the volumeweighted method. Eah spike and unusual deviation in the onservation errors usuallyindiates the appliation of one of the various rules involved in the methodology.Errors were measured using a 2 norm omputed as
√√√√

max∑

i

Abs (Ideali −Measuredi)
2 · (xi − xi−1) (5.6)The results are summarized in Table 5.3. In eah ase the onservation methodsshow a signi�ant redution in error over the volume weighted strategy. Errors foreah mesh, as measured with the two norm are redued by a fator of 10 when volumeweighted tehniques are ompared against onservative moving meshes. While anerror redution of about 1/4 would normally be expeted for a mesh doubling studythe idealized solution in this ase is not the same as an exat solution, and so thepriniples desribed in the previous hapter regarding observed orders of auray donot apply.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringMesh Eigenvalue Conservation Volume WeightedDensity Estimates Error Error41x40 300 .0557 .8082x80 600 .030 .44164x160 1200 .017 .22Table 5.3: 2 Norm Error SummariesA variety of tests were performed. Inreasing the energy group division did notseem to have any impat on the size of the usps for either the onservation methodor the volume weighted method. Simulation models for 2, 4, 8 and 12 energy groupsall demonstrated similar error patterns.5.2.2 Energy Group StudyWhile geometri re�nement is understood to have a lear impat on preision it is notas lear whether a more re�ned energy group struture would also lead to di�erenesor unusual peuliarities for either the onservation methods or the remix methods.The same experiment whih ompares the integrated error di�erene for the onser-vation reativity estimation method with the volume weighted method was performedfor various energy group divisions. As disussed in the setion on approximations thegroup ollapsing proedure does not produe ideal results. A 5%-10% di�erene inore burn-up was required to alibrate the models whih is also re�eted in the mea-surement of 2 norm errors for various energy division. The errors for the 12 energygroup model are plotted in Figure 5.9. This plot shows the di�erene between theerrors generated by the remix method versus the errors generated by the onservationmethod. These errors are typial aross all energy groups. The onservation modelhas twie as many humps as the remix model beause it uses a loalized geometrire�nement although the total number of variables aross the mesh is almost the same.193
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Figure 5.9: 12 Group Reativity Errors5.2.3 Performane StudyStritly speaking the exeution speed of the MOOSE frame work is determined bythe implementation of its solvers, and as suh is not atually at issue for this thesis,some summary performane data for parallel solution times is presented.Jose Roman, one of the main SLEP authors who provided assistane in �ne tuningthe eigensolver, reported the following parallel exeution times for the 164x160 meshand the 320x328 problem under the 8 group ase in Table 5.4. For his tests, thefollowing omputing platform was used: a luster of 20 nodes with dual Pentium 2Ghz Xeon proessors with 1 Gbyte of memory per node, interonneted with a high-speed SCI network with 2-D torus topology. These performane results were derivedas part of the development of an artile whih disusses the MOOSE framework andits performane apabilities when solving matries using SLEP. At this writing, theartile is under review. 194



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringMesh Row Matrix pro=1 pro=2 pro=4 pro=8 pro=16Dim Dim Non-Zeros ses ses ses ses ses164x160 260,064 2,929,008 93.99 57.51 30.79 24.67 15.91328x320 971,296 11,230,176 502.61 373.56 160.68 85.15 �Table 5.4: Parallel Exeution Times in Seonds for 8 Group ProblemThese tests mainly illustrate the parallel salability of the eigensolver library to 8and 16 nodes. A full investigation into the performane of numerial solvers and thedetails behind a parallel solution strategy goes beyond the sope of this thesis. Thisinformation is reprodued here only to give a rough indiation of SLEP's apaities.5.3 Transient Simulation TestsThe steady state simulation tests have a variety of alibration points whih allowtheir values to be �xed at ertain extremes. Con�dene in the results derived inthis setion is based on the on�dene that an be derived from the steady statesimulations. The transient simulation inludes several additional terms, not relevantto the steady state model, whih represent the delayed preursors. As disussed inthe setion on alibration, the inhour equation was used to double hek the transientmodel and ensure that the simulated period orretly orresponded with the model'sexess reativity.This setion assumes several default simulation parameters whih remain �xed,unless otherwise noted
• unontrolled minimum reator period = 25ms
• maximum power trip = 2500 KW, as measured at ion hamber loation
• maximum power is taken aross entire ore, not neessarily same as ion hamber195
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• subritial power = 100 mW
• fuel assembly insertion speed = 3m/se
• shutdown rods drop at 1/2 aeleration due to gravity
• 50 ms delay between maximum power measured and fuel assembly release
• 4 energy groups
• ion hamber power is measured from the fastest energy group
• power step size ratio = 0.925
• onservative meshOne of the major di�ulties in presenting any transient results whih attempt toreprodue the 1994 reativity insertion inident is that the preise reativity for thefully inserted fuel assembly is not known. While the previous setion disussed whatmay seem to be very small di�erenes in eigenvalues, this setion will make it learwhat impat suh small di�erenes an have.This hapter uses a generous breadth in estimating the maximum reativity thatthe MNR ore ould have reahed. As a preliminary study the maximum exessreativity is used as a alibration point for the alulation of the maximum power, asdisussed on the setion on alibration. The suggested unertainty in the estimation ofthe fuel assembly worth of +/- 1.5 mk translates into an unertainty in the maximumpower of about +/- 20%. Given the results in Table 5.5, all models in this setion willuse an exess reativity of 9 mk as their alibration point, and will assume an errorof +/- 30%. Narrowing this estimate is outside the sope of this thesis and is moreproperly studied as a physis problem. 196



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringExess Reativity ρ (mk) 7.5 8.5 9 9.5 10.5Unontrolled Minimum Period (ms) 50 30 25 21 15Maximum Simulated Power (MW) 5.7 7.6 8.7 9.8 12.1Table 5.5: Maximum Reativity vs. Maximum PowerPrevious studies whih estimate the transient behaviour of the ore under similarirumstane were omputed at a lower resolution using point kinetis models thanthe estimates omputed in this hapter. On the one hand this makes the results pre-sented in this setion entirely novel, beause no similar results for the MNR have beenomputed to the same degree of resolution. On the other hand, the results presentedin this setion annot be learly validated against any existing measurements or otheromparable simulations.One of the most ommonly ited failures of simulation studies is that they oftendo not inlude su�ient evidene of their validity or auray. It is believed thatthe material presented in this hapter whih analyzes errors for the steady state asewhen ombined with the more general disussion in the previous hapter on validationprovide a su�ient degree of redibility to establish the onlusions drawn at theend of the hapter. The broad error range that this hapter assumes must also betaken into aount. It is important to point out that the purpose in studying thereativity exursion inident is primarily to alulate the order of magnitude of thepower maximum. Di�erenes between results of +/- 10% are not important, ratherwhat is at stake is whether the instantaneous power is 2 times, 5 times, or 50 timesthe aeptable limit for the ore. Given that the reator ore's instantaneous powerreorder exeeded its sale of 6MW for a brief, but signi�ant period of time, theserough guesses are within the range of possibility.Figure 5.10 shows the di�erene between two reativity urves omputed with theMOOSE, one using onservation tehniques the other using onstants weighted by197



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringvolume to represent tip motion. The volume weighted plot shows many unnaturalspikes and dips whih are learly the result of numerial artifats and have no bearingon the atual simulation. The maximum power derived using both methods is similar,although the time at whih the peaks our is di�erent. The maximum power is largelydetermined by the segment of the urve whih immediately follows the 2.5MW point,and so in some respets this metri forgives the volume weighted method for itsearlier mistakes. The dropping of the shut down rods brings a rather abrupt halt tothe exursion. Time (s) 8 12 13 14 15 16 17Volume Weighted Power (W) .27 .53 .73 1.2 3.9 24 520Conservative Power (W) .28 .59 1.0 2.2 7.8 120 29000Table 5.6: Seleted Power Levels Prior to Control Rod DropTable 5.6 ompares the omputed power levels shortly before the ontrol rods drop.At 8 seonds the two methods approximately agree, di�ering by less than 5% in theirestimate of the power level. At 17 seonds the two methods di�er in their estimate ofmaximum power by a fator of 50. This sudden hange illustrates the impat that anerror of 1 or 2 mk an have on a reativity alulation and is the priniple argumentin favour of using the onservative mesh strategy.The remainder of this hapter will fous on simulation results derived using theMOOSE's onservation methodology on a oarse 41x40 mesh. The volume weightedstrategy will not be investigated any further.One of the main onerns addressed by the original teh report whih disussedthe refueling inident was whether or not the reator ladding atually melted. Forthe ladding to melt the ore power needed to reah a peek high enough for longenough to raise the temperature of the fuel ladding to a value above the melting198
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Figure 5.10: Di�erenes Between Conservation and Volume Weighted Methodspoint for aluminum, whih is around 650 degrees Celsius. The tests performed in thissetion investigate the maximum instantaneous power reahed by the reator at twoloations. The �rst loation is that measured by the ion hamber. The seond isloation roughly near the enter of the ore and is a measure of the maximum powerreahed. Previous point kineti simulations were not able to make this kind of spatialdistintion in the loation of various power measurements in the MNR ore. Thisinvestigation will not attempt to model the temperature of the fuel plates.While more in depth models are within the apability of the MOOSE's framework,the sope of this thesis annot inlude all possible avenues of investigation. Theanalysis of the reativity power as an instantaneous funtion of the time dependentneutron di�usion equation ombined with the delayed preursors presents a su�ientlyrih avenue for investigation, and this setion will limit its investigation to the studyof a handful of parameters whih in�uene the ore's power peak.199



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringParameters whih will e�et the model setup inlude the step size ratio, the ionhamber delay, and the fuel assembly insertion time.5.3.1 Time Based Integration Method SeletionAt the beginning of any given transient run the exat point at whih the power peakours annot be known, �nding this point is rather the purpose of the simulation.The integration algorithm must support a variable step size to apture the rapidlyhanging behaviour whih ours at the instant that the power reahes its maximum.While multi-step preditor orretor algorithms were experimented with, the inabilityof these methods to easily adjust their step size made them unusable. The transientneutron di�usion problem must represent neutrons whih travel at a wide variety ofveloities. As disussed in hapter 2 this results in an extremely sti� problem. Seondorder trapezoid methods were experimented with, and although they were reasonablyaurate and simple to program they often failed to remain stable throughout theduration of the simulated run. Modeling the wide variety of neutron speeds whilestill being able to take steps large enough to allow the simulation to progress at areasonable rate requires the use of multi-value methods. Multi-value methods are veryaurate, allow their step size to be hanged during the ourse of exeution, and forsome variations also have very good stability properties . All of the transient plots inthis hapter were omputed with a 3rd order multi-value integration method.In the region of the fuel reativity peak the neutron di�usion power funtionbehaves very muh like an exponential urve. The rate at whih the urve inreasesis approximated by the ratio of onseutive power measurements taken at the ionhamber. The transient algorithm hooses its step size by attempting to keep thisratio onstant. At eah iteration of the algorithm a step is tentatively taken. If the200



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringratio of the new power level to the old power level is less than the aepted threshold,the new alulation is kept, and the step size is inreased. If the new step results in apower ratio whih is outside the aepted range the step is then rejeted, the step sizeis redued, and a new step is alulated. Many steps in sequene may be rejeted whilethe algorithm searhes for an appropriately small step to take. To avoid hanging stepsize at every single stage in the algorithm a small range is maintained between thelower and upper aeptable step ratios. Additional step size onstraints are imposedwhen the reator power gets very lose to 2500KW. If the simulation measures a orepower greater than 2500KW it heks the size of the previous measurement. If theprevious measurement was less than 2490KW the urrent step is rejeted and the stepsize is redued. This ensures that no matter how large a step the algorithm takes itwill hoose a time index appropriately lose to the atual instant that the ore goesoverpower, usually within about +/- 5KW of 2500KW.5.3.2 Step SizeThe �rst question whih must be addressed after an integration method has beenseleted is the hoie of step size. A sequene of two group transient simulations wererun whih used a variety of ratios between the step sizes ranging from 0.5 to 0.95. Anideal step size should be large enough to minimize exeution time, but small enoughto preserve a reasonable amount of auray. The measured power maximum for eahstep size is reported in Table 5.7. The power exursion for two step sizes is plottedin Figure 5.11 on a logarithmi sale for the period immediately before and after thepeak power was reahed. The 0.70 step is plotted with individual points to give anindiation of how the step size was adjusted.Neither urve plotted in Figure 5.11 is perfetly smooth. The small perturbations201



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringStep Size Ratio .5 .7 .80 .85 .875 .90 .925 .94 .95Power Peak (MW) 8.90 9.13 8.80 8.60 8.77 8.69 8.66 8.61 8.57Steps taken 140 195 268 337 398 483 628 754 924Table 5.7: Transient Step Size Seletion
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Figure 5.11: Transient Reativity Exursionsin the plot are easily attributed to the approximate nature of the reativity estimationsbetween grid points. The plot generated based on the .70 step ratio separates thepoints su�iently that it provides a sense of how the algorithm adjusts step size. Byinspeting this plot around time index 17.5 seonds the point at whih the step size isredued to apture the instant that the power goes above 2500KW an be observed.Changing the step size has some impat on preisely whih points are used duringthe exursion. One would expet that by inreasing the number of steps taken by thealgorithm the power peak might shift in a onsistent way either with an inreasingtrend or with a dereasing trend. The data olleted in Table 5.7 tends to indiate202



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthat using a step size ratio of 0.925 gives a result aurate within 1% of the estimatebased on the .95 ratio whih uses 50% more points. Based on this data the remainingtests in this hapter will use a step size ratio of 0.925.5.3.3 Number of Energy GroupsUsing the step size estimated in the previous setion three separate simulation runsusing various energy group divisions measured the peak power for the ore. The 2group model was not used for transient tests beause for very short reator periodsit exhibited behaviour quite di�erent from the other three models. In addition tothe peak power the measurement reorded at the ion hamber as well as the timeof the peak are also reorded. Inreasing the number of energy group divisions usedby the problem tends to hange the shape that the �ux takes. All the ion hambermeasurements are taken from the �rst group in eah ase. The �rst group measuresthe neutron �ux with energies that range from 8.21e+5 eV to 1e+7 eV and is thesame for eah simulation. Although no appreiable di�erenes were notied betweenthe behaviour of simulations with di�erent number of energy divisions for the steadystate ase, for the transient ase the �ux shape of the highest group is slightly di�erentfor eah model. The 4 group or 8 group models are both good andidates for morepreise measurement studies given their reasonable running times. The 12 groupmodel exeutes quite slowly relative to the others and while it may present informationwith the highest auray the long exeution times required make it desirable to limitfurther study to the 4 and 8 group models.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringEnergy Groups 4 8 12Peak Power (Kw) 8660 8660 8650Ion Chamber Peak (Kw) 6600 7080 7200Time of Peak 17.6 16.8 17.0Table 5.8: Peak Power by Energy Division5.3.4 Ion Chamber DelayThe time delay between when the partiles in the ion hamber are ativated by highlevels of radiation and the time when the shim rods are released is reported to be25ms in the MNR safety report. Given that the reator period is so short at theinstant that this ours there is some onern that if this delay were very muh longerthat the reator might reah a muh higher peak power. This value is di�ult tomeasure and it ould in fat be smaller or larger than the reported value. The resultsin Table 5.9 show that for small variations around the estimated value of 25ms nomore than a 10% shift in the peak power takes plae. Very long ion hamber delays,on the order of several times the reator's minimum period are required before thePeak Power hanges in a drasti way. 50 ms is a relatively onservative estimate ofthe ion hamber delay. It is likely loser to 25 ms.The model presented in this hapter is able to ompute the di�erene in powermeasured at the loation of the ion hamber and the absolute maximum of the ore.In steady state these two values agree, but during the exursion the shape of theore hanges slightly and the �ux at the enter of the ore inreases at a faster ratethan the �ux at the edge of the ore. This phenomena is marginal, the di�erene inthe shape of the ore only aounts for the interior of the ore being about 25%-30%higher in power than the power measured at the ion hamber.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringDelay (ms) 15 20 25 30 40 50 60 75 100 150Peak (MW) 5.9 6.2 6.4 6.8 7.6 8.7 9.3 11.0 14.8 27.3Table 5.9: Peak Power vs. Ion Chamber Delay5.3.5 Sub-ritial PowerAs already disussed the sub-ritial �ux is di�ult to estimate and impossible tomeasure, espeially if it is assumed that the ore has not been operational for a week ormore. Sine the transient neutron di�usion problem exhibits exponential behavioursit is reasonable to ask what impat the initial point has on the performane of theproblem. Given the already established parameters a olletion of 4 group simulationmodels were run eah using a di�erent sub-ritial power in the range of 1 watt and1e-6 watts. Redutions in the starting power e�etively allows the fuel assembly to beinserted further into the ore before the 2.5 MW trip point is reahed. Extra insertiondistane means that some additional reativity has been added by the time that theore is at the 2.5 MW point. The simulation is somewhat insensitive to this fator, ittakes a redution of a fator of 106 in the initial ore power to inrease the maximumore power by a fator of 2.Sub-ritial Power (W) 1 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6Peak Power (MW) 8.2 8.6 10.6 12.5 12.7 14.4 17.7Time Peak Ours 17.37 17.61 17.82 18.01 18.18 18.35 18.51Table 5.10: Peak Power vs. Sub-ritial Power5.3.6 Rod Insertion SpeedFuel assemblies are inserted by an operator who stands on the bridge over the ore atthe MNR. The proess is not automated in any way but is left to the disretion and205



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringexperiene of the operator. The original estimate of a 20 seond insertion time is onlya best guess whih represents the typial ations of an operator. A range of insertionspeeds from 10m/s (assuming that the assembly was aidentally dropped at somepoint) to .5 m/s is used . The di�erenes between these trials are listed in Table5.11. Sine the atual insertion is done by hand the speed will not neessarily beuniform. The insertion speed of 3 m/s, orresponding with a total insertion time of20 seonds, is suggested as likely the fastest rate of insertion that would have ourred.The simulation is relatively sensitive to insertion speeds, reduing the speed of thefuel assembly insertion tends to redue the maximum power ahieved.Veloity (m/s) 10 7.5 5 3 2 1 .5Peak (MW) 37.5 30.5 15.2 8.7 6.7 4.5 3.7Time (s) 5.98 7.7 11.0 17.7 25.6 48.98 93.7Table 5.11: Peak Power vs. Fuel Insertion Speed
5.4 Comparison with Garland's ReportThe original tehnial note [69℄ whih analyzed the instantaneous power level of theMNR was written by Wm. J. Garland in 1997. Garland's report desribes a zerodimensional point kinetis model based on the same parameters desribed in thishapter. He onluded that the best estimate of peak power was approximately 8.4MW. In another internal doument he reports the results of a sensitivity study andadjusts a variety of parameters similar to the parameters examined in this hapterand onludes that 9.8MW is a reasonable maximum power. He used a linear rampto model the reativity insertion. Garland's report also estimates the highest tem-peratures reahed by the ore. The transient simulation studies in this hapter haverestrited their fous to the instantaneous power level reahed by the ore and have206



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringnot attempted to estimate a maximum temperature.This hapter has drawn approximately the same onlusion as Garland's report,that the power exursion that the MNR ore underwent was well within safety tol-erane. The di�erene in the various peak powers omputed in this hapter are notsigni�antly di�erent from the peak omputed in Garland's report.The experiments undertaken in this hapter show that the shape of the ore �uxonly has a moderate impat on the simulation results. There is only a 25% di�erenebetween the power measured at the ion hamber and the power measured at theenter of the reator ore. This spatial di�erene is due to a small hange in shapeof the power pro�le during the ourse of the reativity exursion. This spatial e�etis not aounted for in Garland's point kinetis model although it is not signi�antenough to have a large impat on the maximum power estimate. Garland's reportused a linear ramp to model reativity versus insertion distane. This hapter used afull two dimensional simulation to ompute reativity, a de�nite S shaped urve waspresented in the �rst setion. While this hange in shape has some impat on theresults, it is not a large enough to learly aount for a major di�erene.The most important issue with respet to estimating the maximum height of theinstantaneous power during the exursion appears to be tied to the preise amountof exess reativity that was inserted into the ore. Other questions of importaneinlude the estimation of the initial power level, and the ion hamber delay. Theimpat of these seondary parameters are diretly linked to the estimate of exessreativity inserted into the ore.Issues not onsidered in the original tehnial report but relevant to the develop-ment of this model inlude the mesh density used, the energy group struture used,and the intermediate ell approximation method used. Eah had a de�nitely mea-surable impat on the preision and redibility of the result derived. In addition this207



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringstudy examined ertain physial quantities whih were onsidered to be unknowns,inluding the fuel assembly insertion time, the sub-ritial power. The �nal estimatedpeak power of about between 8 MW and 12 MW, depending on various parame-ters, roughly agrees with the �gure omputed in the 1997 tehnial report and otherestimates reported by Garland.Interestingly the omparison of the di�erently shaped reativity versus insertionurves for the volume weighted ase and the onservation ase showed that the mostimportant part of this urve in determining the maximum power is its shape in the .5seond period immediately after the ore power exeeds 2.5 MW. A simulation whihestimates roughly the orret period for this segment of the reativity urve should bein lose agreement with these results. Beause of the nature of the problem, wherebythe reativity insertion begins at a time determined when the power reahes 2.5 MW,simulators whih use inorret reativity histories prior to this time are forgiven fortheir mistakes.The spei� values omputed in Table 5.6 show that slight errors in reativityurves an result in power errors of enormous magnitude, espeially when those errorsare allowed to aumulate over even moderately short periods of time. Conservativemesh tehniques allow these errors to be avoided while still permitting reasonableexeution times; this is the priniple argument for their use.
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Chapter 6
Conlusions
The MOOSE framework is intended to be a generi modeling tool for simulatingmoving omponents on strutured grids. As a tool, the MOOSE provides a rih envi-ronment whih allows a wide variety of problem on�gurations for the investigationof eigenvalue steady state models and transient models, supporting various designon�gurations and model layouts. Finite di�erene and �nite volume tehniques arestraightforward enough that automating the translation of fundamental partial dif-ferential operators is possible. The strutured meshes used by the MOOSE provideadvantages in terms of low memory onsumption and analytial simpliity.The MOOSE framework has also been used to develop moving mesh interon-netion strategies appropriate for studying reator transients. This hapter suggestsareas whih an take advantage of the framework as well as some general onlusionsregarding the advantages whih an be ahieved using the MOOSE framework. Theontributions of this thesis, as summarized in the introdution, are reprodued here.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering1) A learly de�ned methodology for the linking of meshesChapter 3 summarizes the implementation of three rules whih failitate the link-ing of pathed meshes. The rules apply when i) meshes are misaligned, ii) meshesuse di�erent densities and iii) when material disontinuities our along mesh bound-aries. These rules were justi�ed through experiments and arguments based on �rstpriniples.2) Detailed error analysis whih address two major questions:2 a) The extent to whih using oarse meshes with speial motion teh-niques an improve upon performaneWhile a full omparison with a nodal ode fell outside the sope of this investi-gation, results omputed in Chapter 4 and Chapter 5 showed signi�ant redutionsin errors whih resulted from alulations performed on oarse mixed density meshes,over similar alulations on meshes whih were several times more re�ned. Chapter 5quanti�ed some error redutions as approximately a full order of magnitude or morefor a given problem.2 b) Whether interpolation is su�ient to onnet meshesOnly in a few speial ases should onservation of �ow at mesh boundaries beignored. Nonlinear interpolation alone is not an appropriate mesh onnetion teh-nique, espeially if meshes are linked in a pathwork, or non-overlapping pattern, orif material disontinuities appear near mesh boundaries.3) Detailed re-examination of the estimated power peak reported in the1997 MNR tehnial reportSeveral experiments originally done with zero dimensional point kinetis modelswere repeated in Chapter 5 with a multi-dimensional moving mesh model. Althoughit was suggested in the past that the MNR has a small enough reator ore that210



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringa spatial treatment would not reveal any spei� new details about the reativityinident, this was not demonstrated until now. The report's onlusions were veri�edto within the unertainty of the problem parameters.4) A prototype implementation of the MOOSE framework learly identi-fying a variety of design issuesMoving meshes have not been used in reator physis in part beause of the per-eption that they are di�ult to program, di�ult to implement, and tend to bein�exible. The �exibility of an implementation an be built into the solution pro-ess using tools like omputer algebra and ode generation as presented in Chapter3. Suh tools, illustrated by the MOOSE's design, an build a bridge between a useron�gurable model and high performane solution tehniques.5) The �rst highly developed nulear appliation based on the Krylov-Shur method implemented within the SLEP projetPrevious publiations by the SLEP authors [81℄ used a simpli�ed one and a halfspeed steady state reator model. The steady state results disussed in Chapter 5used 8 and 12 group fully developed �ssion model ombined with a moving meshand are more sophistiated than the previously reported nulear models built withthis tool. SLEP is perhaps the only well developed high performane parallel publidomain sparse eigenvalue solver available today.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering6.1 Future WorkThe following setions present unexplored reativity models, moving mesh topiswhih go beyond reator physis, and �nally a short summary of logial extensions tothe MOOSE framework are summarized.6.1.1 MNR ModelsFuture work possible with the existing MOOSE framework may inlude the analysisof additional detailed simulations of the MMaster Nulear Reator. A fundamentalorretion to the model would be the development of more rigorous ross setion data.While the data that was used was orretable through �ne tuning of model parameters,a prodution simulation used to predit new behaviours rather than analyze pastsenarios, would require better foundations.Beause the MOOSE framework is able to move an entire sub-mesh relative tothe main geometry a sequene of studies whih examined the insertion of fuel rodswhih exhibited non-uniform axial burn-up patterns is possible. Most transient studiesassume a uniform axial burn-up. It would be possible to re-ondut the experimentsfrom Chapter 5 using ross setional data whih better modeled burn-up pattern ofthe rods whih typially ours.Simulations whih tested the sensitivity of the two dimensional model to the posi-tion and exat behaviour of the ion hamber are also important. Additional sopingstudies whih further alibrated the modeled instruments with the atual instrumentsof the MNR would have been instrutive.The MOOSE is fully apable of modeling both the advetive �ow of �uid throughthe ore simultaneously with modeling neutrons produed within the ore. The in-stantaneous power is of interest to this thesis mainly in that it served as a hallenging212



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringase study whih exerised the various apabilities of the MOOSE framework. Model-ing heat build up is of interest for the safety analysis of the ore sine the question ofwhether the fuel was atually damaged during the reativity exursion is determinedby examining whether the melting point of the aluminum fuel ladding was exeeded.6.1.2 MEMS: Further Avenues of Investigation

Figure 6.1: Mite and Gear ChainThe ase study presented in Chapter 5 foused on reator ontrol rod motion,however, this is only one possible major appliation to whih the MOOSE frameworkan be applied. MEMS devies are one example of a modeling domain whih inorpo-rates motion. Other examples outside reator ore design inlude, ombustion enginedesign, robotis design and aerospae design to name only a few. Rather than attemptto disuss a wide range of unrelated examples, this setion provides a olletion ofproblem designs whih inorporate motion for whih there is urrently no aepted213



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringPSE tool, and for whih the MOOSE framework would be appropriate in its urrentstate of development.Miroeletromehanial Systems (MEMS)1 are devies whih range in size froma mirometer to a millimeter and diverge from standard silion manufaturing byinorporating moving omponents. Simple devies suh as osillating apaitors, �uidvalves, magneti springs, optial swithes, relays, frature and motion sensors an beonstruted on sales smaller than one millimeter. The design of a MEMS devie issubjet to omputing the simple motion of a omponent within either an eletri oreletromagneti �eld, and the analysis of the thermal and or mehanial propertiesof that devie. Future work in the area of PSE tools whih fous on motion will �ndMEMS to be a fruitful area for problem de�nitions.Examples of MEMS Devies
Moving Magnet

Fixed Magnets

Figure 6.2: Miro Atuator ConstrutionRostaing [138℄ desribes a miro atuator whih uses permanent magnets to holda swith in plae one it has hanged position in a high displaement design (in exessof 100 mirometers). A moving magnet is maintained in one of two stable positions byintegrated permanent magnets. A pulsed urrent in the ondutors ats on the movingmagnet displaing it from one stable position to the other. During movement, themobile magnet is neither guided nor retained by any mehanial element. Its entral1Image Courtesy of Sandia National Laboratories, SUMMiT Tehnologies, www.mems.sandia.gov214



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringposition in its stable states is ensured by the fores from the �xed magnets, angularstability during motion is ensured by inertia.Interations between magnets and urrents are among the most e�ient at smallsales. In this appliation the atuator is driven by urrent pulses of up to 5 Amps in aondutor of dimensions 20 x 10 mirometers in its thinnest setions. This orrespondsto urrent densities of about 25000 Amps/mm2 and is possible due to the peuliaritiesof the sale of the devie.Kawano [99℄ reports on numerial tehniques used to model a two dimensionalMEMS variable apaitor with aelerated motion e�ets. The aeleration of theapaitor is derived under the equilibrium between the mehanial elasti fore of thespring and the eletrial potential as illustrated in Figure 6.3.
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Figure 6.3: Variable MEMS CapaitorSimulating suh a devie requires a moving model whih an aommodate me-hanial, eletrial, and eletromagneti phenomena. Not only are the apaitor platesvery small, and hene their mass is very low (less than 10-10Kg), but also the systemmust be able to model very high frequenies.Other MEMS sale devies inlude Miromirrors [177℄ whih are often used for im-plementing optial ross-onnets. Miro-valves [90℄ an be fabriated using hydrogelmaterial. Hydrogel material has the unique harateristi of responding to externalstimulus by hanging in volume. A miromehanial sensor array of laterally mov-ing mass-spring systems is desribed by [144℄. The devie is fabriated by SCREAM215



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringtehnology and is intended for low ost appliations in wear state reognition. Di-aphragm membranes are used in a variety of appliations in aoustis and are alsofound in other pressure sensitive devies (suh as disposable blood pressure sensors)are desribed by [113, 54℄.6.1.3 Framework ExtensionsThe majority of the simulations presented in this thesis were either ellipti or paraboliin nature. Hyperboli problems require a few additional operators (ross produtfor example) for general implementation whih were not developed for the MOOSEframework. In priniple these operators ould be added as extensions to the alreadyexisting matrix generation funtions.Many models require three dimensional representations. This work was not at-tempted as part of this thesis beause it was believed that two dimensional modelswould be su�iently able to demonstration the basi onservation priniples.Allowing mesh shear and rotation transformations on moving mesh bloks wouldprovide other important extensions whih would inrease the sope of geometri mod-els that the MOOSE framework ould address. Rotation and shear funtions furtherompliate ell linking and were not neessary for the target appliations.To be generally usable a PSE requires a detailed graphial user interfae. Whilea simpli�ed user interfae was developed for the framework, a fully graphial imple-mentation whih inluded ontext sensitive hints system, parallel debugging tools,graphial mouse driven layout tools, and integrated output representation, is an im-portant and neessary extension.
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering6.2 Performane DisussionThe most re�ned mesh presented in Chapter 5 of 320x328 ells simulated a totalof over 200000 variables for the 2 group fuel rod insertion model. On a moderndesktop omputer the memory alloation proedures used by the diret solver as partof the eigenvalue problem onsumed over 1 gigabyte of physial memory to solve thisproblem. The more memory intensive diret solvers were favoured for their betterexeution performane and higher preision, espeially under the steady state tests.The transient tests did not bene�t as muh from the preision provided by the diretmethods and so the GMRES solver was favoured for some of the transient tests.A diret dense matrix routine, like those implemented in LAPACK, would requirethe storage of the matrix as an array of 200000 rows by 200000 olumns to representthe 320x328 mesh for the 2 group ase. A double preision �oating point numberonsumes 8 bytes of spae, so suh a matrix is stored in a dense format would onsume320 gigabytes of memory. While sparse solvers present their di�ulties, for ertainproblems, they are apable of irumventing these memory requirement by assumingthat unless otherwise spei�ed a matrix entry is zero.While lassial relaxation methods an be implemented without translating theproblem into a matrix, if implemented in a naive fashion their performane sales withthe ube of the size of the problem. This poor performane alone would make themunusable as tools for this thesis. Previous simulation work [71℄ developed for the MNRused a simple hand oded iterative solver based on the power method whih performedquite poorly both in terms of preision and speed when ompared with SLEP'sperformane. Earlier versions of this work [72℄ also su�ered from poor preision priorto the inorporation of SLEP. Plots like those presented in Chapter 5 require theomputation of thousands of individual eigenvalues and solver performane, while not217



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringthe fous of this thesis, will determine whether suh omputations are possible or not.The MOOSE's error orreting algorithms yield a di�erene in preision of a full or-der of magnitude over naive volume weighted methods. This di�erene means roughlythat the alulation performed on the 41x40 mesh using the onservation method ismore preise than the alulation performed using the volume weighted method ona mesh of 164x160 ells. Depending on the eigenvalue solver method seleted andthe arhiteture used, at best, the eigenvalue method will sale at about the ratio of
n · log (n) where n is the size of the problem. In the performane studies presentedin hapter 5, when timed on a wall lok, the 164x160 mesh alulation ran between50 and 100 times more slowly than the 41x40 alulation depending on the preiseproblem setup and omputer used.This simple omparison should ompellingly suggest that in the ase of motionstudies being able to use a oarse grid will dramatially redue exeution times withoutintroduing unmanageable errors.6.3 Final ConlusionAlthough this thesis has foused disussing performane in terms of reduing measur-able errors, it must also be pointed out that the redution in implementation e�ort foreah model built under a framework like the MOOSE is signi�ant. Quantitativelymeasuring the human e�ort required to implement one type of model versus anotheris very di�ult and falls squarely within the realm of learning theory, psyhology andhuman omputer interfaes. Reduing the implementation e�ort required by sientistsand engineers is just as important as reduing the omputational e�ort required by amahine.As disussed in the previous setion, a one order of magnitude di�erene in pre-218



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringision between two methods translates into a two orders of di�erene in magnitudeof exeution time when the attempt is made to improve the preision of the poorermethod by re�ning the mesh. While the onservation mesh methods are more om-plex to implement than their more obvious brute fore ounterparts, the savings interms of osts of equipment, and the time required to wait for a given solution to bederived may be well worth the e�ort of implementation.Inreasing global problem resolution to redue errors should be a last resort. Meth-ods like the grid onservation tehniques desribed in this thesis open up an entirelynew vista of omputational data. While moving grid tehniques have reeived littleattention in nulear forums, the results presented in this thesis suggest that there isa wealth of high preision information available that ould improve the state of theart in nulear engineering, espeially when speial problems whih take omponentmotion are to be addressed.While framework development may be expensive, and for any modeling system aertain learning urve is neessary, ultimately tools whih follow the ideals presentedby the advoates of PSEs will likely dominate the future simulation landsape. Toolslike the MOOSE framework, whih an potentially be applied to a wide variety ofproblem domains, will in the future allow researhers who are interested in modelingnew engineering mehanisms to fous their e�orts on their partiular domains ofinterest rather than on the details of numerial modeling.
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Appendix 1 Fundamental NumerialAlgorithmsSeveral fundamental algorithms disussed in the body of the thesis are presented inthis appendix.6.4 Conjugate GradientThe onjugate gradient algorithm is an example of a typial spetral method, the fol-lowing presentation is taken from [21℄. The onjugate gradient method is the oldestand best known of the non-stationary methods. The method proeeds by generat-ing vetor sequenes of iterates, residuals orresponding to the iterates, and searhdiretions used in updating the iterates and residuals. Although the length of these se-quenes an beome large, only a small number of vetors needs to be kept in memory.In every iteration of the method two inner produts are performed in order to omputeupdate salars that are de�ned to make the sequenes satisfy ertain orthogonalityonditions.The iterates xi are updated in eah iteration by a multiple αi of the searh vetor
pi

xi = xi−1 + αip
iCorrespondingly the residuals ri = b−Axi are updated as

ri = ri−1 − αiq
iwhere

qi = ApiThe hoie α = αi = r(i−1)T r(i−1)/piTApi minimizes riTA−1ri over all possible hoiefor α. The searh diretions are updated using the residuals
pi = ri + βi−1p

i−1236



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringAlgorithm 5 Pseudo Code for Conjugate GradientCompute r(0)=b-Ax(0) for some initial guess x(0)for i=1, 2, ...p(i-1)=r(i-1)*r(i-1)if i=1p(1)=r(0)else B(i-1)=p(i-1)/p(i-2)p(i)=r(i-1) + B(i-1)p(i-1)endifq(i)=A*p(i)a(i)=p(i-1)/p(i) * q(i)x(i)=x(i-1)+a(i)*p(i)r(i)=r(i-1)-a(i)*q(i)hek for onvergene; ontinue if neessaryendwhere the hoie of βi = ri/r(i−1)T ri−1 ensures that pi and Api−1 are orthogonal.
6.5 The Multi-Grid AlgorithmThe linear multi-grid method [180, 117℄ an be an extremely fast solution tehnique,although its implementation diverges quite radially from the previously desribediterative methods beause it requires multiple problem representations.The multi-grid algorithm is a divide-and-onquer tehnique for solving elliptiPDEs. The algorithm obtains an initial solution for an n× n grid by using an n

2
× n

2grid as an approximation, taking every other grid point from the n-by-n grid. Theoarser n
2
× n

2
grid is in turn approximated by an n

4
× n

4
grid, and so on reursively. Thework done on a partiular grid eliminates the error in half of the frequeny omponentsnot eliminated on other grids. The work performed on a oarse grid makes the overallsolution smoother, whih is equivalent to getting rid of the high frequeny error.The problem is spei�ed by the grid size i, the oe�ient matrix is T i, and the righthand side is bi. Let P i denote the problem of solving a disretized ellipti problem ona (2i + 1)× (2i + 1) grid, with (2i − 1)2 unknowns. A sequene of related problems isgenerated Pm, Pm−1, Pm−2, ...P 1 on oarser and oarser grids, where the solution to

P i−1 is a good approximation to the solution of P i.Let bi be the right-hand-side of the linear system P i. Let xi denote an approxi-mate solution to P i. The restrition operator Ri takes a pair (bi, xi) and maps it to237
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P2P1 P3

Figure 6.4: Sequene of Meshes used by Multi-Grid
(bi−1, xi−1) , whih is a simpler problem on the next oarser grid, with starting guess
xi:

(bi−1, xi−1) = Ri(bi, xi)The restrition operator for simple problems an be omputed as a weighted av-erage of eah grid point value with its nearest neighbors. The interpolation operator
Ini−1 takes an approximate solution xi−1 and onverts it to an approximation xi forthe problem P i on the next �ner grid:

(bi, xi) = Ini−1(bi−1, xi−1)The solution operator Si take a problem P i and approximate solution xi, andomputes an improved xi.
xi = Si(bi, xi)The improvements damp the high frequeny omponents of the error. The basimultiplied V yle an be summarized in Algorithm 62.Multiple representations of a physial model of various resolutions are used by themethod to aelerate onvergene of the model. The solution proess yles betweensolving a high resolution version of the model and a low resolution of the model.The low resolution representation of the problem aelerates the ommuniation ofinformation aross the mesh.Multi-grid methods have exellent performane harateristis. The spetral teh-niques presented in the previous setion will �nd a solution in at best in O (n · log (n))iterations, in ontrast the multi-grid method an solve a problem in O (n) iterations.Multi-grid methods also adapt well to parallel implementations. For some problems2Algorithm is reprodued from on-line ourse notes provided by Jim Demmelhttp://www.s.berkeley.edu/~demmel/s267-1995/leture25/leture25.html238



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringAlgorithm 6 Multi-grid V ylefuntion MGV( b(i), x(i) ) ... return an improved solution... x(i) to P(i)if i = 1 ... only one unknownompute the exat solution x(1) of P(1)return ( b(1), x(1) )else x(i) = S(i)( b(i), x(i) ) ... improve the solution( b(i), d(i) ) = In(i-1)( MGV( R(i)( b(i), x(i) ) ) )... solve reursivelyx(i) = x(i) - d(i) ... orret fine grid solutionx(i) = S(i)( b(i), x(i) ) ... improve the solution some morereturn ( b(i), x(i) )endifonstruting multiple similar representations may not be trivial (the Iniand Ri oper-ators desribed in the algorithm), this is the priniple di�ulty assoiated with themulti-grid method.6.6 Lanzos AlgorithmA summary of the Lanzos algorithm is presented here for the standard eigenvalueproblem
Ax = λxwhere A is symmetri and real. The algorithm starts with a properly hosen startingvetor v and builds up an orthogonal basis Vj of the Krylov subspae,

Kj(A, v) = span{v, V A,A2v, ..., Aj−1v}one olumn at a time. In eah step just one matrix-vetor multipliation
y = Axis needed. In the new orthogonal basis Vj the operator A is represented by a realsymmetri tridiagonal matrix,

Tj =





α1 β1

β1 α2
. . .. . . . . . βj−1

βj−1 αj
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringwhih is also built up one row and olumn at a time, using the basi reursion,
AVj = VjTi + re∗jwith V ∗

j r = 0. At any step j an eigensolution for Tj an be omputed as
Tjs

(j)
i = s

(j)
i θ

(j)
iwhere the supersript (j) is used to indiate that these quantities hange for eahiteration j. The Ritz value θ(j)

i and its Ritz vetor,
x

(j)
i = Vjs

(j)
iwill be a good approximation to an eigenpair of A if the residual has a small norm.The Ritz pair is omputed as

r
(j)
i = Ax

(j)
i − x

(j)
i θ

(j)
i = AVjs

(j)
i − Vjs

(j)
i θ

(j)
i = (AVj − VjTj)s

(j)
i = vj+1βjs

(j)
j,iThis norm satis�es

∥∥∥r(j)
i

∥∥∥
2

=
∣∣∣βjs

(j)
i,j

∣∣∣ = βj,ithe algorithm needs to monitor the subdiagonal elements βj of T and the last elements
s
(j)
i,j of its eigenvetors to generate an estimate of the norm of the residual. As soon asthis estimate is small, the Ritz value θ(j)

i an be �agged as onverged to the eigenvalue
λi.
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Algorithm 7 Lanzos Methodstart with r=vB(0)=||r||2for j=1,2,... until onvergenev(j)=r/B(j-1)r=r-v(j-1)/B(j-1)A(j)=v(j)rr=r-v(j)*a(j)reorthogonalzie if neessaryB(j)=||r||2ompute approximate eigvenvalues T(j)=S*t(j)*Stest bounds for onvergeneend forompute approximate eigenvetors X=V(j)S
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Appendix 2 Example MOOSE PDEs
This appendix presents the MOOSE on�guration equations whih were used to spe-ify the sparse matries for the ase study presented in Chapter 5. These equationsapture the details of the neutron di�usion equation, and the multi-value integrationmethod. Appendix 3 gives a partial listing of the soure ode whih is generated bythe MOOSE based on this on�guration �le for the 2 energy group ase.####################################################### Physial onstants whih define delayed preursors ######################################################## Bet[i℄ taken from p64 D&H, Sum(B[i℄=.007) total delayed preursorsBet:=[.000266, .001491, .001316, .002849, .000896, .000182℄;# Lam[i℄, taken from p64 D&H, Lam=1/TLam:=[.0183, .0458, .167, .448, 2.02, 4.49℄;# V[i℄, average group veloity, defined as 13,891 * sqrt(eV) m/s,# This vetor is in m/s, so the # are really big.# oi is the old index, it hanges depending on our mode.################################ Delayed preursor equations ################################Delayed:=[C[i℄=sup[C[i℄,oi℄ + .5 * G_h *(-Lam[i℄*C[i℄ + fal[G℄*sum(Bet[i℄*nu_Sigma_f[j℄*T[j℄,j=1..G)-Lam[i℄*sup[C[i℄,oi℄ +fal[G℄*sum(Bet[i℄*nu_Sigma_f[j℄*sup[T[j℄,oi℄,j=1..G)), C[i℄ ℄;#Delayed preursor alulation for steady state aseDelayed_ss:=[0=-Lam[i℄*C[i℄ +fal[G℄*sum(Bet[i℄*nu_Sigma_f[j℄*T[j℄,j=1..G), C[i℄ ℄;
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering###################################################################### Soure Terms and Removal Terms for the Nuetron Diffusion Equation ####################################################################### Aording to D&H delayed neutrons appear with a different distribution# than prompt neutrons. pChi approximates thisSoure_new:=(.993)*Chi[i℄*fal[G℄*sum(nu_Sigma_f[j℄*T[j℄,j=1..G)+ pChi[i℄*sum(Lam[j℄*C[j℄,j=1..6) ;Soure_old:=(.993)*Chi[i℄*fal[G℄*sum(nu_Sigma_f[j℄*sup[T[j℄,oi℄,j=1..G)+ pChi[i℄*sum(Lam[j℄*sup[C[j℄,oi℄,j=1..6) ;Removal_new:=LAPL(1/(3*Sigma_tr[i℄)*T[i℄) - T[i℄*Sigma_r[i℄+ sum(T[j℄*Sigma_s[j℄[i℄,j=1..G) - T[i℄*Sigma_s[i℄[i℄;Removal_old:=LAPL(1/(3*Sigma_tr[i℄)*sup[T[i℄,oi℄) - sup[T[i℄,oi℄*Sigma_r[i℄ + sum(sup[T[j℄,oi℄*Sigma_s[j℄[i℄,j=1..G) -sup[T[i℄,oi℄*Sigma_s[i℄[i℄;############################################### Third order Multi-Value Integration Method ###############################################s1:=(G_h/G_ho);s2:=(G_h*G_h)/(G_ho*G_ho);Th[i℄:=sup[T[i℄,oi℄+s1*sup[T1[i℄,oi℄+ s2*sup[T2[i℄,oi℄;Th1[i℄:= s1*sup[T1[i℄,oi℄+2*s2*sup[T2[i℄,oi℄;Th2[i℄:= s2*sup[T2[i℄,oi℄;alpha:= G_h * (V[i℄ *( Removal_new + G_subrit + Soure_new )-Th1[i℄/G_h ) ;# third order method, Stiffly stable.Flux:= [T[i℄=Th[i℄ + alpha * (2./3.), T[i℄℄,[T1[i℄=Th1[i℄ + alpha , T1[i℄℄,[T2[i℄=Th2[i℄ + alpha * (1./3.), T2[i℄℄;# steady state inluding preursorsFlux_ss:=[ 0 = V[i℄ *( Removal_new + G_subrit + Soure_new ), T[i℄ ℄,[T1[i℄=0,T1[i℄℄,[T2[i℄=0,T2[i℄℄;
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PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering##################################### PDE Speifiation by Mode Number #####################################if mode = 1then# initialization, set all variables = 0initseq:=[T[i℄=0,T[i℄℄,[T1[i℄=0,T1[i℄℄,[T2[i℄=0,T2[i℄℄;PDEs:=[seq(initseq,i=1..G),seq([C[i℄=0,C[i℄℄,i=1..6)℄;elif mode = 2then# Solve even step of integrationoi:=3;PDEs:=[seq(Flux,i=1..G),seq(Delayed,i=1..6)℄;elif mode = 3then# Solve odd step of integrationoi:=2;PDEs:=[seq(Flux,i=1..G),seq(Delayed,i=1..6)℄;elif mode = 4then# Solve steady state preondition for integrationPDEs:=[seq(Flux_ss,i=1..G),seq(Delayed_ss,i=1..6)℄;end if;
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Appendix 3 Example Generated Code

/*---------------------------------------------------------------* This funtion is an example of the ode generated by the MOOSE* for the onstrution of sparse matries. Reprodued here is* the first 4300 lines (roughly 20%) of one of the funtions whih* generates a sparse matrix for the two group transient ase* for the multi-value integration method.** The generated ode for this ase builds the matrix entries* neessary for the interior of a retangular mesh, as well* as the ode for the east and west borders for one step of* the transient algorithm. Conservation rules are embedded.** All of the ode in this file is automatially generated.* For the sake of this appendix many long omments have been* lipped. The omments embedded in the funtion desribe* some of the partial symboli variables whih the matrix* generator is using to generate the ode. Matrix generator* funtion names often preede setions of ode whih they* generate.** While this funtion is quite long and tedious to examine by* hand, it presents no diffiulties for g to ompile, or for* the matrix generator to reate based on the input onfiguration* files.***** Calling arguments are as follows:** ell_strut_%s_%s ell struture for given onstant/property* dimx, dimy dimension of the map, 1..dimx,1..dimy* defines the major variables, a ring exists* around these also.* key the type of ell being defined by the* aller. Certain keys math ertain EQstrs.* Mid, bid Matrix id, and b vetor id.* idx variable spae id* mode another seletor for hoosing equations* X_st starting point in X vetor* dx, dy delta X and delta Y for this map* posx, posy starting position of grid[1℄[1℄* mask ??** Purpose of funtion:** Generates a portion of the matrix for a given key and a given245



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering* geometri subregion.** Notie the name of the funtion is given as:** matrix_build_<physis_name>_<onst_name>_<property_name>** Any given basi map is partly defined by what onstant struture* it uses and what property struture it uses.** A basi map may also use multiple physis regiems within the map,* in partiular for defining border onditions whih differ from the* default border onditions.** Remember also that the mode whih is used to initialize a map* an also effet whih physial regimes are used.*---------------------------------------------------------------*/// File reated by Maple, alling parameters built as// EQFILE:="default_mp"; PRPFILE:="default_pdef";// CONFILE:="gr2_well_def"; MODES:=[2, 3, 4, 1℄;// to debug run maple in projet dir, exeute the following:// read "../../bin/eq_pp"; traelast;#inlude "simlib.h"#define P_SIZE 12 // Property Sizeintmatrix_build_default_mp_gr2_well_def_default_pdef(ell_strut_gr2_well_def_default_pdef *** grid, int dimx, int dimy,int key, int Mid, int bid, int idx, int mode, int X_st, float dx, float dy,float posx, float posy, int mask) {int ROW_POS, COL_POS, ROWLEN;int x, y, i, xyindex;int ierr;double VALUE;double weight[16℄;int ol[16℄;int ons_method;double on, ons, fx, fy;double rejet_fr;ROWLEN = dimx + 2;int PHIs[MAX_R℄;double PHIsx[MAX_R℄;double PHIsy[MAX_R℄;int PHI[MAX_R℄;double fr[MAX_R℄;double unfr;ell_strut_gr2_well_def_default_pdef *ps[MAX_R℄, *p[MAX_R℄;void *op;PHI[0℄ = -1;PHIs[0℄ = -1;fr[0℄ = 0;p[0℄ = NULL;ps[0℄ = NULL;unfr = 0;op = NULL;double SUP[1000℄, t[1000℄; // temporary storage for optimizationfx = 0;fy = 0;on = 0;ons = 0;VALUE = 0;COL_POS = 0;ierr = 0;i = 0;xyindex = 0; 246



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringon = 0;SUP[0℄ = 0;t[0℄ = 0;if (grid != NULL) {if (mode == 2) {/*do the interior setup (easy)*/for (y = 1; y <= dimy; y++)for (x = 1; x <= dimx; x++) {if (grid[x℄[y℄->ell_id == key) {//*******************Call made to gen:-mat_blok()// *************** all made to pre_supsrSUP[1℄ =rs_rd_pt(3, rs_prop_T, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[2℄ =rs_rd_pt(3, rs_prop_T1, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[3℄ =rs_rd_pt(3, rs_prop_T2, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[4℄ =rs_rd_pt(3, rs_prop_T, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[5℄ =rs_rd_pt(3, rs_prop_T1, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[6℄ =rs_rd_pt(3, rs_prop_T2, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[7℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 1, 1);SUP[8℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 2, 1);SUP[9℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 3, 1);SUP[10℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 4, 1);SUP[11℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 5, 1);SUP[12℄ =rs_rd_pt(3, rs_prop_C, posx + dx * (x + -.5),posy + dy * (y + -.5), 6, 1);//PDE [T[1℄ = SUP[1℄+G_h/G_ho*SUP[2℄+G_h^2/G_ho^2*SUP[3℄+.6666666667*G_h*(V[1℄*(1/3*(T[e℄[1℄/(1//PDE_vars [T[1℄, T1[1℄, T2[1℄, T[2℄, T1[2℄, T2[2℄, C[1℄, C[2℄, C[3℄, C[4℄, C[5℄, C[6℄℄/******************/// var[1℄=1// of[1℄=-.6666666667*G_h*(V[1℄*G_subrit-1.*(G_h/G_ho*SUP[2℄+2.*G_h^2/G_ho^2*SUP[3℄)/G_h)-1.*// var[2℄=C[6℄// of[2℄=-2.993333333*G_h*V[1℄*pChi[1℄// var[3℄=T[2℄// of[3℄=-.6666666667*G_h*V[1℄*(.993*grid[x+0℄[y+0℄->->Chi[0℄*fal[2℄*grid[x+0℄[y+0℄->->nu_S// var[4℄=C[5℄// of[4℄=-1.346666667*G_h*V[1℄*pChi[1℄// var[5℄=C[1℄// of[5℄=-.1220000000e-1*G_h*V[1℄*pChi[1℄// var[6℄=C[2℄// of[6℄=-.3053333333e-1*G_h*V[1℄*pChi[1℄247



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// var[7℄=C[3℄// of[7℄=-.1113333333*G_h*V[1℄*pChi[1℄// var[8℄=C[4℄// of[8℄=-.2986666667*G_h*V[1℄*pChi[1℄// var[9℄=T[e℄[1℄// of[9℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x+// var[10℄=T[w℄[1℄// of[10℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[11℄=T[n℄[1℄// of[11℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[12℄=T[s℄[1℄// of[12℄=-.2222222222*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// diag=T[1℄// diagmult=1-.6666666667*G_h*V[1℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->->Sigma_tr[0℄`+1/2*`grid[x+1℄[y/******************/// Row for EQ T[1℄ = SUP[1℄+G_h/G_ho*SUP[2℄+G_h^2/G_ho^2*SUP[3℄+.6666666667*G_h*(V[1℄*(1/3*(T[e// Variables represented by this insertion://[1, C[6℄, T[2℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[1℄, T[w℄[1℄, T[n℄[1℄, T[s℄[1℄℄// The diagonal element is set to:// 1-.6666666667*G_h*V[1℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->->Sigma_tr[0℄`+1/2*`grid[x+1℄[y+0℄->->SROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 2 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 7 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);t[4℄ = 1. / (dx * dx);t[13℄ = 1. / (dy * dy);VALUE =1 -.6666666667 * G_h * V[1℄ * (1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[0℄ +grid[x + 1℄[y +0℄->->Sigma_tr[0℄) * t[4℄ *-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[0℄ +grid[x + -1℄[y +0℄->->Sigma_tr[0℄) * t[4℄ *248



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[0℄ +grid[x + 0℄[y +-1℄->->Sigma_tr[0℄) *t[13℄ * -2. * 1. /3. +1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[0℄ +grid[x + 0℄[y +1℄->->Sigma_tr[0℄) *t[13℄ * -2. * 1. /3. - grid[x + 0℄[y +0℄->->Sigma_r[0℄ + .993 * grid[x + 0℄[y +0℄->->Chi[0℄ *fal[2℄ * grid[x +0℄[y +0℄->->nu_Sigma_f[0℄);matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -2.993333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.6666666667 * G_h * V[1℄ * (.993 *grid[x + 0℄[y +0℄->->Chi[0℄ * fal[2℄ *grid[x + 0℄[y +0℄->->nu_Sigma_f[1℄ +grid[x + 0℄[y + 0℄->->Sigma_s[1℄[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -1.346666667 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.1220000000e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.3053333333e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 2 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.1113333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.2986666667 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 *grid[x + 1℄[y +0℄->249



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 *grid[x + -1℄[y +0℄->->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[4℄ = G_h * 1. / G_ho * SUP[2℄;t[5℄ = G_h * G_h;t[6℄ = G_ho * G_ho;t[9℄ = t[5℄ * 1. / t[6℄ * SUP[3℄;VALUE =.6666666667 * G_h * (V[1℄ * G_subrit -1. * (t[4℄ +2. * t[9℄) * 1. /G_h) + 1. * SUP[1℄ + 1. * t[4℄ + 1. * t[9℄;vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*G_h/G_ho*SUP[2℄-2.*G_h^2/G_ho^2*SUP[3℄-1.*G_h*(V[1℄*G_subrit-1.*(G_h/G_ho*SUP[2℄// var[2℄=C[6℄// of[2℄=-4.49*G_h*V[1℄*pChi[1℄// var[3℄=T[2℄// of[3℄=-1.*G_h*V[1℄*(.993*grid[x+0℄[y+0℄->->Chi[0℄*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[4℄=T[1℄// of[4℄=-1.*G_h*V[1℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*gr// var[5℄=C[5℄// of[5℄=-2.02*G_h*V[1℄*pChi[1℄// var[6℄=C[1℄// of[6℄=-.183e-1*G_h*V[1℄*pChi[1℄// var[7℄=C[2℄// of[7℄=-.458e-1*G_h*V[1℄*pChi[1℄// var[8℄=C[3℄// of[8℄=-.167*G_h*V[1℄*pChi[1℄// var[9℄=C[4℄// of[9℄=-.448*G_h*V[1℄*pChi[1℄// var[10℄=T[e℄[1℄ 250



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// of[10℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[11℄=T[w℄[1℄// of[11℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[12℄=T[n℄[1℄// of[12℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[13℄=T[s℄[1℄// of[13℄=-.3333333333*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// diag=T1[1℄// diagmult=1/******************/// Row for EQ T1[1℄ = G_h/G_ho*SUP[2℄+2*G_h^2/G_ho^2*SUP[3℄+G_h*(V[1℄*(1/3*(T[e℄[1℄/(1/2*Sigma_// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[1℄, T[w℄[1℄, T[n℄[1℄, T[s℄[1℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 2 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 7 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -4.49 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-1. * G_h * V[1℄ * (.993 *grid[x + 0℄[y +0℄->->Chi[0℄ *fal[2℄ * grid[x + 0℄[y +0℄->->nu_Sigma_f[1℄ + grid[x + 0℄[y +0℄->->Sigma_s[1℄[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->->Sigma_tr[0℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-1. * G_h * V[1℄ * (-.3333333333 * 1. /251



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(t[2℄ +.5000000000 * grid[x + 1℄[y +0℄->->Sigma_tr[0℄) * t[6℄ -.3333333333 * 1. / (t[2℄ +.5000000000 * grid[x + -1℄[y +0℄->->Sigma_tr[0℄) *t[6℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +-1℄->->Sigma_tr[0℄)* t[17℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +1℄->->Sigma_tr[0℄) *t[17℄ - 1. * grid[x + 0℄[y +0℄->->Sigma_r[0℄ +.993 * grid[x + 0℄[y +0℄->->Chi[0℄ * fal[2℄ *grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -2.02 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.183e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.458e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 2 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.167 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -.448 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 *grid[x + 1℄[y +0℄->->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 *grid[x + -1℄[y +0℄->->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = 252



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringX_st + -ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[3℄ = G_h * 1. / G_ho * SUP[2℄;t[5℄ = G_h * G_h;t[6℄ = G_ho * G_ho;t[10℄ = 2. * t[5℄ * 1. / t[6℄ * SUP[3℄;VALUE =1. * t[3℄ + t[10℄ + 1. * G_h * (V[1℄ * G_subrit -1. * (t[3℄ + t[10℄) * 1. / G_h);vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*G_h^2/G_ho^2*SUP[3℄-.3333333333*G_h*(V[1℄*G_subrit-1.*(G_h/G_ho*SUP[2℄+2.*G_h^2/// var[2℄=C[6℄// of[2℄=-1.496666667*G_h*V[1℄*pChi[1℄// var[3℄=T[2℄// of[3℄=-.3333333333*G_h*V[1℄*(.993*grid[x+0℄[y+0℄->->Chi[0℄*fal[2℄*grid[x+0℄[y+0℄->->nu_S// var[4℄=T[1℄// of[4℄=-.3333333333*G_h*V[1℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000// var[5℄=C[5℄// of[5℄=-.6733333333*G_h*V[1℄*pChi[1℄// var[6℄=C[1℄// of[6℄=-.6099999999e-2*G_h*V[1℄*pChi[1℄// var[7℄=C[2℄// of[7℄=-.1526666667e-1*G_h*V[1℄*pChi[1℄// var[8℄=C[3℄// of[8℄=-.5566666666e-1*G_h*V[1℄*pChi[1℄// var[9℄=C[4℄// of[9℄=-.1493333333*G_h*V[1℄*pChi[1℄// var[10℄=T[e℄[1℄// of[10℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[11℄=T[w℄[1℄// of[11℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[12℄=T[n℄[1℄// of[12℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// var[13℄=T[s℄[1℄// of[13℄=-.1111111111*G_h*V[1℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[0℄+.5000000000*grid[x// diag=T2[1℄// diagmult=1/******************/// Row for EQ T2[1℄ = G_h^2/G_ho^2*SUP[3℄+.3333333333*G_h*(V[1℄*(1/3*(T[e℄[1℄/(1/2*Sigma_tr[1℄+// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[1℄, T[w℄[1℄, T[n℄[1℄, T[s℄[1℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;253



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 2 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 7 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -1.496666667 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[1℄ * (.993 *grid[x + 0℄[y +0℄->->Chi[0℄ * fal[2℄ *grid[x + 0℄[y +0℄->->nu_Sigma_f[1℄ +grid[x + 0℄[y + 0℄->->Sigma_s[1℄[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->->Sigma_tr[0℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-.3333333333 * G_h * V[1℄ * (-.3333333333 * 1. /(t[2℄ +.5000000000 *grid[x + 1℄[y +0℄->->Sigma_tr[0℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + -1℄[y +0℄->->Sigma_tr[0℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +-1℄->->254



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringSigma_tr[0℄) *t[17℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[0℄) * t[17℄ - 1. * grid[x +0℄[y + 0℄->->Sigma_r[0℄ +.993 * grid[x + 0℄[y +0℄->->Chi[0℄ *fal[2℄ * grid[x + 0℄[y +0℄->->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -.6733333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.6099999999e-2 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.1526666667e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.5566666666e-1 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;VALUE = -.1493333333 * G_h * V[1℄ * pChi[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 *grid[x + 1℄[y +0℄->->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 *grid[x + -1℄[y +0℄->->Sigma_tr[0℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 6 + y * ROWLEN * P_SIZE + P_SIZE * x;255



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringVALUE =-.1111111111 * G_h * V[1℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[0℄ +.5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[0℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[1℄ = G_h * G_h;t[2℄ = G_ho * G_ho;t[5℄ = t[1℄ * 1. / t[2℄ * SUP[3℄;VALUE =1. * t[5℄ +.3333333333 * G_h * (V[1℄ * G_subrit -1. * (G_h * 1. / G_ho *SUP[2℄ + 2. * t[5℄) * 1. / G_h);vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-.6666666667*G_h*(V[2℄*G_subrit-1.*(G_h/G_ho*SUP[5℄+2.*G_h^2/G_ho^2*SUP[6℄)/G_h)-1.*// var[2℄=C[6℄// of[2℄=-2.993333333*G_h*V[2℄*pChi[2℄// var[3℄=T[1℄// of[3℄=-.6666666667*G_h*V[2℄*(grid[x+0℄[y+0℄->->Sigma_s[0℄[1℄+.993*grid[x+0℄[y+0℄->->Chi[1// var[4℄=C[5℄// of[4℄=-1.346666667*G_h*V[2℄*pChi[2℄// var[5℄=C[1℄// of[5℄=-.1220000000e-1*G_h*V[2℄*pChi[2℄// var[6℄=C[2℄// of[6℄=-.3053333333e-1*G_h*V[2℄*pChi[2℄// var[7℄=C[3℄// of[7℄=-.1113333333*G_h*V[2℄*pChi[2℄// var[8℄=C[4℄// of[8℄=-.2986666667*G_h*V[2℄*pChi[2℄// var[9℄=T[e℄[2℄// of[9℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x+// var[10℄=T[w℄[2℄// of[10℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[11℄=T[n℄[2℄// of[11℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[12℄=T[s℄[2℄// of[12℄=-.2222222222*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// diag=T[2℄// diagmult=1-.6666666667*G_h*V[2℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->->Sigma_tr[1℄`+1/2*`grid[x+1℄[y/******************/// Row for EQ T[2℄ = SUP[4℄+G_h/G_ho*SUP[5℄+G_h^2/G_ho^2*SUP[6℄+.6666666667*G_h*(V[2℄*(1/3*(T[e// Variables represented by this insertion://[1, C[6℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[2℄, T[w℄[2℄, T[n℄[2℄, T[s℄[2℄℄// The diagonal element is set to:// 1-.6666666667*G_h*V[2℄*(-1/3/(1/2*`grid[x+0℄[y+0℄->->Sigma_tr[1℄`+1/2*`grid[x+1℄[y+0℄->->SROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);256



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCOL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);t[4℄ = 1. / (dx * dx);t[13℄ = 1. / (dy * dy);VALUE =1 -.6666666667 * G_h * V[2℄ * (1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[1℄ +grid[x + 1℄[y +0℄->->Sigma_tr[1℄) * t[4℄ *-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[1℄ +grid[x + -1℄[y +0℄->->Sigma_tr[1℄) * t[4℄ *-2. * 1. / 3. +1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[1℄ +grid[x + 0℄[y +-1℄->->Sigma_tr[1℄) *t[13℄ * -2. * 1. /3. +1. /(grid[x + 0℄[y + 0℄->->Sigma_tr[1℄ +grid[x + 0℄[y +1℄->->Sigma_tr[1℄) *t[13℄ * -2. * 1. /3. - grid[x + 0℄[y +0℄->->Sigma_r[1℄ + .993 * grid[x + 0℄[y +0℄->->Chi[1℄ *fal[2℄ * grid[x +0℄[y +0℄->->nu_Sigma_f[1℄);matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -2.993333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.6666666667 * G_h * V[2℄ *(grid[x + 0℄[y + 0℄->->Sigma_s[0℄[1℄ +257



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering.993 * grid[x + 0℄[y +0℄->->Chi[1℄ * fal[2℄ *grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -1.346666667 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.1220000000e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.3053333333e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.1113333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;VALUE = -.2986666667 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 *grid[x + 1℄[y +0℄->->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 *grid[x + -1℄[y +0℄->->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.2222222222 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[4℄ = G_h * 1. / G_ho * SUP[5℄;t[5℄ = G_h * G_h; 258



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringt[6℄ = G_ho * G_ho;t[9℄ = t[5℄ * 1. / t[6℄ * SUP[6℄;VALUE =.6666666667 * G_h * (V[2℄ * G_subrit -1. * (t[4℄ +2. * t[9℄) * 1. /G_h) + 1. * SUP[4℄ + 1. * t[4℄ + 1. * t[9℄;vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*G_h/G_ho*SUP[5℄-2.*G_h^2/G_ho^2*SUP[6℄-1.*G_h*(V[2℄*G_subrit-1.*(G_h/G_ho*SUP[5℄// var[2℄=C[6℄// of[2℄=-4.49*G_h*V[2℄*pChi[2℄// var[3℄=T[2℄// of[3℄=-1.*G_h*V[2℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*gr// var[4℄=T[1℄// of[4℄=-1.*G_h*V[2℄*(grid[x+0℄[y+0℄->->Sigma_s[0℄[1℄+.993*grid[x+0℄[y+0℄->->Chi[1℄*fal[2℄// var[5℄=C[5℄// of[5℄=-2.02*G_h*V[2℄*pChi[2℄// var[6℄=C[1℄// of[6℄=-.183e-1*G_h*V[2℄*pChi[2℄// var[7℄=C[2℄// of[7℄=-.458e-1*G_h*V[2℄*pChi[2℄// var[8℄=C[3℄// of[8℄=-.167*G_h*V[2℄*pChi[2℄// var[9℄=C[4℄// of[9℄=-.448*G_h*V[2℄*pChi[2℄// var[10℄=T[e℄[2℄// of[10℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[11℄=T[w℄[2℄// of[11℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[12℄=T[n℄[2℄// of[12℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[13℄=T[s℄[2℄// of[13℄=-.3333333333*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// diag=T1[2℄// diagmult=1/******************/// Row for EQ T1[2℄ = G_h/G_ho*SUP[5℄+2*G_h^2/G_ho^2*SUP[6℄+G_h*(V[2℄*(1/3*(T[e℄[2℄/(1/2*Sigma_// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[2℄, T[w℄[2℄, T[n℄[2℄, T[s℄[2℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);259



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCOL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -4.49 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->->Sigma_tr[1℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-1. * G_h * V[2℄ * (-.3333333333 * 1. /(t[2℄ +.5000000000 * grid[x + 1℄[y +0℄->->Sigma_tr[1℄) * t[6℄ -.3333333333 * 1. / (t[2℄ +.5000000000 * grid[x + -1℄[y +0℄->->Sigma_tr[1℄) *t[6℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +-1℄->->Sigma_tr[1℄)* t[17℄ - .3333333333 * 1. / (t[2℄ +.5000000000 *grid[x + 0℄[y +1℄->->Sigma_tr[1℄) *t[17℄ - 1. * grid[x + 0℄[y +0℄->->Sigma_r[1℄ +.993 * grid[x + 0℄[y +0℄->->Chi[1℄ * fal[2℄ *grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-1. * G_h * V[2℄ *(grid[x + 0℄[y + 0℄->->Sigma_s[0℄[1℄ +.993 * grid[x + 0℄[y +0℄->->Chi[1℄ * fal[2℄ *grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -2.02 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.183e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.458e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.167 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;260



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringVALUE = -.448 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 *grid[x + 1℄[y +0℄->->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 *grid[x + -1℄[y +0℄->->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[3℄ = G_h * 1. / G_ho * SUP[5℄;t[5℄ = G_h * G_h;t[6℄ = G_ho * G_ho;t[10℄ = 2. * t[5℄ * 1. / t[6℄ * SUP[6℄;VALUE =1. * t[3℄ + t[10℄ + 1. * G_h * (V[2℄ * G_subrit -1. * (t[3℄ + t[10℄) * 1. / G_h);vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*G_h^2/G_ho^2*SUP[6℄-.3333333333*G_h*(V[2℄*G_subrit-1.*(G_h/G_ho*SUP[5℄+2.*G_h^2/// var[2℄=C[6℄// of[2℄=-1.496666667*G_h*V[2℄*pChi[2℄// var[3℄=T[2℄// of[3℄=-.3333333333*G_h*V[2℄*(-.3333333333/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000// var[4℄=T[1℄// of[4℄=-.3333333333*G_h*V[2℄*(grid[x+0℄[y+0℄->->Sigma_s[0℄[1℄+.993*grid[x+0℄[y+0℄->->Chi[1// var[5℄=C[5℄// of[5℄=-.6733333333*G_h*V[2℄*pChi[2℄ 261



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// var[6℄=C[1℄// of[6℄=-.6099999999e-2*G_h*V[2℄*pChi[2℄// var[7℄=C[2℄// of[7℄=-.1526666667e-1*G_h*V[2℄*pChi[2℄// var[8℄=C[3℄// of[8℄=-.5566666666e-1*G_h*V[2℄*pChi[2℄// var[9℄=C[4℄// of[9℄=-.1493333333*G_h*V[2℄*pChi[2℄// var[10℄=T[e℄[2℄// of[10℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[11℄=T[w℄[2℄// of[11℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[12℄=T[n℄[2℄// of[12℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// var[13℄=T[s℄[2℄// of[13℄=-.1111111111*G_h*V[2℄/(.5000000000*grid[x+0℄[y+0℄->->Sigma_tr[1℄+.5000000000*grid[x// diag=T2[2℄// diagmult=1/******************/// Row for EQ T2[2℄ = G_h^2/G_ho^2*SUP[6℄+.3333333333*G_h*(V[2℄*(1/3*(T[e℄[2℄/(1/2*Sigma_tr[2℄+// Variables represented by this insertion://[1, C[6℄, T[2℄, T[1℄, C[5℄, C[1℄, C[2℄, C[3℄, C[4℄, T[e℄[2℄, T[w℄[2℄, T[n℄[2℄, T[s℄[2℄℄// The diagonal element is set to:// 1 ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE = -1.496666667 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;t[2℄ = .5000000000 * grid[x + 0℄[y + 0℄->->Sigma_tr[1℄;t[6℄ = 1. / (dx * dx);t[17℄ = 1. / (dy * dy);VALUE =-.3333333333 * G_h * V[2℄ * (-.3333333333 * 1. /(t[2℄ +.5000000000 *262



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringgrid[x + 1℄[y +0℄->->Sigma_tr[1℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + -1℄[y +0℄->->Sigma_tr[1℄) *t[6℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[1℄) *t[17℄ -.3333333333 * 1. /(t[2℄ + .5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[1℄) * t[17℄ - 1. * grid[x +0℄[y + 0℄->->Sigma_r[1℄ +.993 * grid[x + 0℄[y +0℄->->Chi[1℄ *fal[2℄ * grid[x + 0℄[y +0℄->->nu_Sigma_f[1℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.3333333333 * G_h * V[2℄ *(grid[x + 0℄[y + 0℄->->Sigma_s[0℄[1℄ +.993 * grid[x + 0℄[y +0℄->->Chi[1℄ * fal[2℄ *grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 4 + P_SIZE * x;VALUE = -.6733333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;VALUE = -.6099999999e-2 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;VALUE = -.1526666667e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;VALUE = -.5566666666e-1 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 3 + P_SIZE * x;VALUE = -.1493333333 * G_h * V[2℄ * pChi[2℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 *grid[x + 1℄[y +0℄->->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + -P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;263



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringVALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 *grid[x + -1℄[y +0℄->->Sigma_tr[1℄) * 1. / (dx * dx);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + -ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +-1℄->->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);COL_POS =X_st + ROWLEN * P_SIZE + 7 + y * ROWLEN * P_SIZE + P_SIZE * x;VALUE =-.1111111111 * G_h * V[2℄ * 1. / (.5000000000 *grid[x + 0℄[y +0℄->->Sigma_tr[1℄ +.5000000000 * grid[x + 0℄[y +1℄->->Sigma_tr[1℄) * 1. / (dy * dy);matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);t[1℄ = G_h * G_h;t[2℄ = G_ho * G_ho;t[5℄ = t[1℄ * 1. / t[2℄ * SUP[6℄;VALUE =1. * t[5℄ +.3333333333 * G_h * (V[2℄ * G_subrit -1. * (G_h * 1. / G_ho *SUP[5℄ + 2. * t[5℄) * 1. / G_h);vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*SUP[7℄-.5*G_h*(-.183e-1*SUP[7℄+fal[2℄*(.266e-3*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄*// var[2℄=T[2℄// of[2℄=-.1330e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[3℄=T[1℄// of[3℄=-.1330e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// diag=C[1℄// diagmult=1+.915e-2*G_h/******************/// Row for EQ C[1℄ = SUP[7℄+.5*G_h*(-.183e-1*C[1℄+fal[2℄*(.266e-3*nu_Sigma_f[1℄*T[1℄+.266e-3*n// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.915e-2*G_h ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);264



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .915e-2 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.1330e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.1330e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[7℄ + .5 * G_h * (-.183e-1 * SUP[7℄ +fal[2℄ * (.266e-3 *grid[x + 0℄[y +0℄->->nu_Sigma_f[0℄* SUP[1℄ + .266e-3 * grid[x +0℄[y+0℄->->nu_Sigma_f[1℄* SUP[4℄));vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*SUP[8℄-.5*G_h*(-.458e-1*SUP[8℄+fal[2℄*(.1491e-2*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// var[2℄=T[2℄// of[2℄=-.7455e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[3℄=T[1℄// of[3℄=-.7455e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// diag=C[2℄// diagmult=1+.2290e-1*G_h/******************/// Row for EQ C[2℄ = SUP[8℄+.5*G_h*(-.458e-1*C[2℄+fal[2℄*(.1491e-2*nu_Sigma_f[1℄*T[1℄+.1491e-2// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.2290e-1*G_h ROW_POS = X_st + y * ROWLEN * P_SIZE + 1 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 1;matrixdr_ADDzero(COL_POS);265



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 3;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 4;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .2290e-1 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.7455e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.7455e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[8℄ + .5 * G_h * (-.458e-1 * SUP[8℄ +fal[2℄ * (.1491e-2 *grid[x + 0℄[y +0℄->->nu_Sigma_f[0℄* SUP[1℄ + .1491e-2 * grid[x +0℄[y + 0℄->->nu_Sigma_f[1℄* SUP[4℄));vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*SUP[9℄-.5*G_h*(-.167*SUP[9℄+fal[2℄*(.1316e-2*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄*SU// var[2℄=T[2℄// of[2℄=-.6580e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[3℄=T[1℄// of[3℄=-.6580e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// diag=C[3℄// diagmult=1+.835e-1*G_h/******************/// Row for EQ C[3℄ = SUP[9℄+.5*G_h*(-.167*C[3℄+fal[2℄*(.1316e-2*nu_Sigma_f[1℄*T[1℄+.1316e-2*nu// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.835e-1*G_h ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);266



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .835e-1 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.6580e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.6580e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[9℄ + .5 * G_h * (-.167 * SUP[9℄ +fal[2℄ * (.1316e-2 *grid[x + 0℄[y +0℄->->nu_Sigma_f[0℄* SUP[1℄ + .1316e-2 * grid[x +0℄[y + 0℄->->nu_Sigma_f[1℄* SUP[4℄));vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*SUP[10℄-.5*G_h*(-.448*SUP[10℄+fal[2℄*(.2849e-2*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄*// var[2℄=T[2℄// of[2℄=-.14245e-2*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[3℄=T[1℄// of[3℄=-.14245e-2*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// diag=C[4℄// diagmult=1+.2240*G_h/******************/// Row for EQ C[4℄ = SUP[10℄+.5*G_h*(-.448*C[4℄+fal[2℄*(.2849e-2*nu_Sigma_f[1℄*T[1℄+.2849e-2*n// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+.2240*G_h ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);267



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringCOL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + .2240 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.14245e-2 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.14245e-2 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[10℄ + .5 * G_h * (-.448 * SUP[10℄ +fal[2℄ * (.2849e-2 *grid[x +0℄[y +0℄->->nu_Sigma_f[0℄ *SUP[1℄ +.2849e-2 *grid[x +0℄[y +0℄->->nu_Sigma_f[1℄ * SUP[4℄));vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*SUP[11℄-.5*G_h*(-2.02*SUP[11℄+fal[2℄*(.896e-3*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄*S// var[2℄=T[2℄// of[2℄=-.4480e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[3℄=T[1℄// of[3℄=-.4480e-3*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// diag=C[5℄// diagmult=1+1.010*G_h/******************/// Row for EQ C[5℄ = SUP[11℄+.5*G_h*(-2.02*C[5℄+fal[2℄*(.896e-3*nu_Sigma_f[1℄*T[1℄+.896e-3*nu_// Variables represented by this insertion://[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+1.010*G_h ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);268



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + 1.010 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.4480e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.4480e-3 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[11℄ + .5 * G_h * (-2.02 * SUP[11℄ +fal[2℄ * (.896e-3 *grid[x +0℄[y +0℄->->nu_Sigma_f[0℄ *SUP[1℄ +.896e-3 *grid[x +0℄[y +0℄->->nu_Sigma_f[1℄ * SUP[4℄));vetdr_wr(bid, ROW_POS, VALUE);/******************/// var[1℄=1// of[1℄=-1.*SUP[12℄-.5*G_h*(-4.49*SUP[12℄+fal[2℄*(.182e-3*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄*S// var[2℄=T[2℄// of[2℄=-.910e-4*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[1℄// var[3℄=T[1℄// of[3℄=-.910e-4*G_h*fal[2℄*grid[x+0℄[y+0℄->->nu_Sigma_f[0℄// diag=C[6℄// diagmult=1+2.245*G_h/******************/// Row for EQ C[6℄ = SUP[12℄+.5*G_h*(-4.49*C[6℄+fal[2℄*(.182e-3*nu_Sigma_f[1℄*T[1℄+.182e-3*nu_// Variables represented by this insertion:269



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering//[1, T[2℄, T[1℄℄// The diagonal element is set to:// 1+2.245*G_h ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// Zero mat struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄COL_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_ADDzero(COL_POS);COL_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);COL_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_ADDzero(COL_POS);VALUE = 1 + 2.245 * G_h;matrixdr_ADD(ROW_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;VALUE =-.910e-4 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[1℄;matrixdr_ADD(COL_POS, VALUE);COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;VALUE =-.910e-4 * G_h * fal[2℄ * grid[x + 0℄[y + 0℄->->nu_Sigma_f[0℄;matrixdr_ADD(COL_POS, VALUE);matrixdr_CLOSE(Mid, ROW_POS);VALUE =1. * SUP[12℄ + .5 * G_h * (-4.49 * SUP[12℄ +fal[2℄ * (.182e-3 *grid[x +0℄[y +0℄->->nu_Sigma_f[0℄ *SUP[1℄ +.182e-3 *grid[x +0℄[y +0℄->->nu_Sigma_f[1℄ * SUP[4℄));vetdr_wr(bid, ROW_POS, VALUE);} // ***** end_if((grid[x℄[y℄->ell_id=key))} // ***** end_for(x)// The mode is 2//*******************Call made to ring:-orners()if (MAT_ROW_fin[Mid℄[X_st℄ == 0) {y = 0;x = 0; 270



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringif (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-reflet// There are no maps beyond this boarder so reflet vars// refletion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = 0;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;271



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x + 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, ol, weight, ROW_POS);272



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringfor (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),273



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = 0;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);}y = 0;x = dimx + 1;if (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-reflet// There are no maps beyond this boarder so reflet vars274



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// refletion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = 0;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);275



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x - 1 + (y + 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);276



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);277



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringvetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = 0;x = dimx + 1;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);}y = dimy + 1;x = 0;if (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-reflet// There are no maps beyond this boarder so reflet vars// refletion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = dimy + 1;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;278



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);279



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x + 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;280



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0; 281



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = 0;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);}y = dimy + 1;x = dimx + 1;if (rs_ptr_get(idx, posx + (x - .5) * dx, +posy + (y - .5) * dy, 1)== NULL) {// ********************* Call made to gen:-reflet// There are no maps beyond this boarder so reflet vars// refletion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = dimy + 1;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);282



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);283



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringvetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x - 1 + (y - 1) * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} else {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),284



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(posy + y * dy - .5 * dy), 4, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,285



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = dimy + 1;x = dimx + 1;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);}}//*******************Call made to ring:-make()/*------------------ East border ----------------------*/for (xyindex = 1; xyindex <= dimy; xyindex++) {ons_method = 1;if (grid[dimx℄[xyindex℄->ell_id == key)if (grid[dimx + 1℄[xyindex℄->Be == 0) {// ********************* Call made to gen:-reflet// There are no maps beyond this boarder so reflet vars// refletion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = xyindex;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);286



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringvetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);287



PhD thesis D. Gilbert MMaster - Eletrial and Computer EngineeringROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x - 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} else if (grid[dimx + 1℄[xyindex℄->Be == 1) {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, ol, weight, ROW_POS);288



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringfor (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),289



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = dimx + 1;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);} else if (grid[dimx + 1℄[xyindex℄->Be > 1) {ons_method = grid[dimx + 1℄[xyindex℄->Be;// ************* ring:-onserve// LAPL_VARS1:={LAPL(1/3/Sigma_tr[1℄*T[1℄), LAPL(1/3/Sigma_tr[2℄*T[2℄)}// PDEs_arg:=[[T[1℄ = sup[T[1℄,3℄+G_h/G_ho*sup[T1[1℄,3℄+G_h^2/G_ho^2*sup[T2[1℄,3℄+.6666666667*G// ************* ring:-onserve_shape_ode alled for T[1℄// the geometri position for the row is based on little_phi*y = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-onserve_exat_big_PHI_W_E for T[1℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx + dx * (dimx + .1);op = (void *) &grid[dimx℄[y℄;rs_exat_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,(void **) ps, (void **) p, &unfr, op);rejet_fr = 100; // must be initialized to zero to work290



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringi = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[1℄on = 1.0 * 1 / p[i℄->->Sigma_tr[0℄;// Computing far onstant 1/Sigma_tr[1℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[0℄;// disabled rejet_fr+=dy*fr[i℄*Abs(on-ons)/(Abs(on)+Abs(ons));i++;if (i > MAX_R)abort();}if (ons_method != 3)rejet_fr = 100;if (rejet_fr < G_RTHRESH) {printf("r(%g)", rejet_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[1℄on = 1.0 * 1 / p[i℄->->Sigma_tr[0℄;// Computing far onstant 1/Sigma_tr[1℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[0℄;matrixdr_ADD(PHI[i℄ + 6, fr[i℄ * (on + ons) / 2);matrixdr_ADD(PHIs[i℄ + 6, -fr[i℄ * (on + ons) / 2);i++;}}// ************* ring:-onserve_shape_small_PHI_W_E for T[1℄y = xyindex;x = dimx;// Computing far onstant 1/Sigma_tr[1℄on = 1.0 * 1 / grid[x + 0℄[y + 0℄->->Sigma_tr[0℄;// Computing far onstant 1/Sigma_tr[1℄ons = 1.0 * 1 / grid[x + 1℄[y + 0℄->->Sigma_tr[0℄;if (rejet_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, (on + ons) * dy / dx / 2);}x = dimx + 1;if (rejet_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, (on + ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, -(on + ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ************* ring:-onserve_shape_ode alled for T[2℄// the geometri position for the row is based on little_phi*y = xyindex;x = dimx + 1;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-onserve_exat_big_PHI_W_E for T[2℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx + dx * (dimx + .1);op = (void *) &grid[dimx℄[y℄;rs_exat_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,291



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering(void **) ps, (void **) p, &unfr, op);rejet_fr = 100; // must be initialized to zero to worki = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[2℄on = 1.0 * 1 / p[i℄->->Sigma_tr[1℄;// Computing far onstant 1/Sigma_tr[2℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[1℄;// disabled rejet_fr+=dy*fr[i℄*Abs(on-ons)/(Abs(on)+Abs(ons));i++;if (i > MAX_R)abort();}if (ons_method != 3)rejet_fr = 100;if (rejet_fr < G_RTHRESH) {printf("r(%g)", rejet_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[2℄on = 1.0 * 1 / p[i℄->->Sigma_tr[1℄;// Computing far onstant 1/Sigma_tr[2℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[1℄;matrixdr_ADD(PHI[i℄ + 7, fr[i℄ * (on + ons) / 2);matrixdr_ADD(PHIs[i℄ + 7, -fr[i℄ * (on + ons) / 2);i++;}}// ************* ring:-onserve_shape_small_PHI_W_E for T[2℄y = xyindex;x = dimx;// Computing far onstant 1/Sigma_tr[2℄on = 1.0 * 1 / grid[x + 0℄[y + 0℄->->Sigma_tr[1℄;// Computing far onstant 1/Sigma_tr[2℄ons = 1.0 * 1 / grid[x + 1℄[y + 0℄->->Sigma_tr[1℄;if (rejet_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, (on + ons) * dy / dx / 2);}x = dimx + 1;if (rejet_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, (on + ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, -(on + ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);/******************* Call made to ring:-end_fill alled ALL_SYMS=[T[2℄, T[1℄℄*/y = xyindex;x = dimx + 1;// Zero Filling struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄// Symbols exluded [T[2℄, T[1℄℄ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;292



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} elseabort();}; //******************* end for(xyindex)/*------------------ West border ----------------------*/for (xyindex = 1; xyindex <= dimy; xyindex++) {if (grid[1℄[xyindex℄->ell_id == key)if (grid[0℄[xyindex℄->Bw == 0) {// ********************* Call made to gen:-reflet// There are no maps beyond this boarder so reflet vars// refletion for [C[6℄, T[2℄, T1[2℄, T2[2℄℄y = xyindex;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;293



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 1 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 2 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 3 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 4 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 5 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 6;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 6 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 7;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 7 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 8 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 9 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);294



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 10 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);COL_POS = X_st + 11 + (x + 1 + y * ROWLEN) * P_SIZE;matrixdr_ADD(COL_POS, -1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} else if (grid[0℄[xyindex℄->Bw == 1) {// ********************* Call made to ring:-interp_loop// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 1 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 2 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 3, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 3 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 4, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);295



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 4 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 5, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 5 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_C,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 6, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 8 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)296



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 9 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T1,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 10 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ********************* Call made to ring:-interp_rowy = xyindex;x = 0;ROW_POS = X_st + 11 + y * ROWLEN * P_SIZE + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);rs_far_border(idx, rs_prop_T2,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight, ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, -1 * weight[i℄);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);} else if (grid[0℄[xyindex℄->Bw > 1) {ons_method = grid[0℄[xyindex℄->Bw;// ************* ring:-onserve// LAPL_VARS1:={LAPL(1/3/Sigma_tr[1℄*T[1℄), LAPL(1/3/Sigma_tr[2℄*T[2℄)}// PDEs_arg:=[[T[1℄ = sup[T[1℄,3℄+G_h/G_ho*sup[T1[1℄,3℄+G_h^2/G_ho^2*sup[T2[1℄,3℄+.6666666667*G// ************* ring:-onserve_shape_ode alled for T[1℄// the geometri position for the row is based on little_phi*y = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-onserve_exat_big_PHI_W_E for T[1℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx - .1 * dx;op = (void *) &grid[1℄[y℄;rs_exat_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,(void **) ps, (void **) p, &unfr, op);rejet_fr = 100; // must be initialized to zero to worki = 0;while (fr[i℄ >= 0) {297



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineering// Computing far onstant 1/Sigma_tr[1℄on = 1.0 * 1 / p[i℄->->Sigma_tr[0℄;// Computing far onstant 1/Sigma_tr[1℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[0℄;// disabled rejet_fr+=dy*fr[i℄*Abs(on-ons)/(Abs(on)+Abs(ons));i++;if (i > MAX_R)abort();}if (ons_method != 3)rejet_fr = 100;if (rejet_fr < G_RTHRESH) {printf("r(%g)", rejet_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[1℄on = 1.0 * 1 / p[i℄->->Sigma_tr[0℄;// Computing far onstant 1/Sigma_tr[1℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[0℄;matrixdr_ADD(PHI[i℄ + 6, fr[i℄ * (on + ons) / 2);matrixdr_ADD(PHIs[i℄ + 6, -fr[i℄ * (on + ons) / 2);i++;}}// ************* ring:-onserve_shape_small_PHI_W_E for T[1℄y = xyindex;x = 1;// Computing far onstant 1/Sigma_tr[1℄on = 1.0 * 1 / grid[x + 0℄[y + 0℄->->Sigma_tr[0℄;// Computing far onstant 1/Sigma_tr[1℄ons = 1.0 * 1 / grid[x + -1℄[y + 0℄->->Sigma_tr[0℄;if (rejet_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, (on + ons) * dy / dx / 2);}x = 0;if (rejet_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 1, 1, ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, (on + ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 6 + P_SIZE * x;matrixdr_ADD(COL_POS, -(on + ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);// ************* ring:-onserve_shape_ode alled for T[2℄// the geometri position for the row is based on little_phi*y = xyindex;x = 0;ROW_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_OPEN(Mid, ROW_POS);// ************* ring:-onserve_exat_big_PHI_W_E for T[2℄// set fy, the floating point x position to the E/W edgey = xyindex;fx = posx - .1 * dx;op = (void *) &grid[1℄[y℄;rs_exat_PHI_WE(idx, fx, posy + (xyindex - 1) * dy,dy, PHIs, PHI, PHIsx, PHIsy, fr,(void **) ps, (void **) p, &unfr, op);rejet_fr = 100; // must be initialized to zero to work298



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringi = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[2℄on = 1.0 * 1 / p[i℄->->Sigma_tr[1℄;// Computing far onstant 1/Sigma_tr[2℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[1℄;// disabled rejet_fr+=dy*fr[i℄*Abs(on-ons)/(Abs(on)+Abs(ons));i++;if (i > MAX_R)abort();}if (ons_method != 3)rejet_fr = 100;if (rejet_fr < G_RTHRESH) {printf("r(%g)", rejet_fr);} else {i = 0;while (fr[i℄ >= 0) {// Computing far onstant 1/Sigma_tr[2℄on = 1.0 * 1 / p[i℄->->Sigma_tr[1℄;// Computing far onstant 1/Sigma_tr[2℄ons = 1.0 * 1 / ps[i℄->->Sigma_tr[1℄;matrixdr_ADD(PHI[i℄ + 7, fr[i℄ * (on + ons) / 2);matrixdr_ADD(PHIs[i℄ + 7, -fr[i℄ * (on + ons) / 2);i++;}}// ************* ring:-onserve_shape_small_PHI_W_E for T[2℄y = xyindex;x = 1;// Computing far onstant 1/Sigma_tr[2℄on = 1.0 * 1 / grid[x + 0℄[y + 0℄->->Sigma_tr[1℄;// Computing far onstant 1/Sigma_tr[2℄ons = 1.0 * 1 / grid[x + -1℄[y + 0℄->->Sigma_tr[1℄;if (rejet_fr > G_RTHRESH) {COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, (on + ons) * dy / dx / 2);}x = 0;if (rejet_fr < G_RTHRESH) {rs_far_border(idx, rs_prop_T,(posx + x * dx - .5 * dx),(posy + y * dy - .5 * dy), 2, 1, ol, weight,ROW_POS);for (i = 0; i < 16; i++)matrixdr_ADD(ol[i℄, (on + ons) * dy / dx / 2 * weight[i℄);}COL_POS = X_st + y * ROWLEN * P_SIZE + 7 + P_SIZE * x;matrixdr_ADD(COL_POS, -(on + ons) * dy / dx / 2);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0);/******************* Call made to ring:-end_fill alled ALL_SYMS=[T[2℄, T[1℄℄*/y = xyindex;x = 0;// Zero Filling struture [C[6℄, T[2℄, T1[2℄, T2[2℄℄// Symbols exluded [T[2℄, T[1℄℄ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 1 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);299



PhD thesis D. Gilbert MMaster - Eletrial and Computer Engineeringmatrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + (x + y * ROWLEN) * P_SIZE + 2;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 3 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 4 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 5 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 8 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 9 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 10 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);ROW_POS = X_st + 11 + (x + y * ROWLEN) * P_SIZE;matrixdr_OPEN(Mid, ROW_POS);matrixdr_ADD(ROW_POS, 1.);matrixdr_CLOSE(Mid, ROW_POS);vetdr_wr(bid, ROW_POS, 0.);} elseabort();}; //******************* end for(xyindex)/*------------------ North border ----------------------*/...
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