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Chapter 4     Equation of State

4.1 Introduction

4.1.1 Chapter Content

As discussed in chapters 2 and 3, the momentum equation gives an update on the flows or velocities from one
node to another, or from one grid point to another, based on a given pressure, flow, mass and enthalpy distri-
bution.  The updated flows are used by the mass and enthalpy equations to update the mass and enthalpy
contents at each location.  This information is given to the equation of state to update the pressure distribution
which, along with the new densities and enthalpies is used by the momentum equation, and so on.  In this
manner, a time history of the fluid evolution is obtained.  Of course, only the main variables are noted.  The
numerous and diverse empirical correlations require updates on the main variables and many secondary
variables.  This information also "flows" around the calculation.

This chapter explores how to get the pressure given information from the governing conservation equations.

4.1.2 Learning Outcomes

Objective 4.1 The student should be able to calculate any dependent thermodynamic property given
any two independent state variables using (a) the steam tables, (b) supplied codes, (c)
supplied curve fits to the steam tables.

Condition Open book written examination.

Standard 100%. 

Related
concept(s)

Water properties.

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a

Objective 4.2 The student should be able to develop a flow diagram and pseudo-code for the
calculation of P and T given density and enthalpy.

Condition Open book written examination.

Standard 100%. 

Related
concept(s)

The rate form of the equation of state.

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a a
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π (P, V, T, M) ' 0 (1)

π (P, ν, T) ' 0 (2)

Objective 4.3 The student should be able to explain the pressure and temperature response of a
volume of fluid to perturbations given the F and G functions.

Condition Open book written examination.

Standard 100%. 

Related
concept(s)

The rate form of the equation of state.

Classification Knowledge Comprehension Application Analysis Synthesis Evaluation

Weight a a

4.1.3 Chapter Layout

The exploration of the appropriate forms of the equation of state to use for systems analysis begins by
reflecting on the thermodynamics and the iterative method of finding pressure.  Next a non-iterative method
is offered as an improvement.  This leads naturally to the water property evaluation.  Fast, accurate curve fits
are presented.

 
4.2 Thermodynamic Properties

From a thermodynamics viewpoint (see, for instance Sears [SEA75], the equation of state of a substance is
a relationship between any four thermodynamic properties of the substance, three of which are independent.
An example of the equation of state involves pressure P, volume V, temperature T and mass of system:

If any three of the four properties are fixed, the fourth is determined.

The equation of state can also be written in a form which depends only on the nature of the system and not
on how much of the substance is present, hence all extensive properties are replaced by their corresponding
specific values.  Thus

is the specific value form of the above equation of state, where ν is the specific volume.  If any two of the
thermodynamic properties are fixed, the third is determined.

From a thermodynamic point of view, the appropriate way to present water properties is by tables or formula
for each property expressed as a function of the independent parameters P and T, as per Meyer [MEY67 or
Haar [HAR84] (figure 4.1).  Thus given values of pressure and temperature, the calculation of other
thermodynamic properties is usually straightforward.  On the other hand, the determination of pressure from
known values of other thermodynamic properties is not direct since interpolation and iteration is required.
Unfortunately, T and P are rarely the independent parameters in system dynamics since the numerical solution
of the conservation equations yield mass and energy as a function of time.  Hence, from the point of view of
the equation of state, it is mass and energy which are the independent parameters.  Consequently, system
codes are hampered by the form of water property data commonly available.

A key point to note is that the conservation equations are all cast as rate equations whereas the equation of
state is typically written as an algebraic equation.  This arises from the basic assumption that, although the
properties of mass, momentum and energy must be traced or solved as a function of time and space, the
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ν '
1
ρ

' νf(P) % xest νfg(P) (3)

corresponding local pressure is a pure function of the local state of the fluid.  Process dynamics are not
considered.  This is the essence of the equilibrium assumption (in a like manner, of course, we invariably use
steady state heat transfer coefficients, etc. in dynamic processes).  Historically, this mixture of form arose
because thermodynamics endeavours were concerned with equilibrium states and not with system processes.
System modellers, on the other hand, emphasized system dynamics and used what was available for
constitutive relations.  System modellers are more concerned with numerical problems.

But the decisive role of the equation of state in determining system dynamics was recognized early.  Paynter
[PAY60] identifies the power throughput as being the most important parameter for system dynamics. Power
is composed of the product of effort (i.e. force or pressure) and flow. Porsching [POR71] correctly identifies
the important role of flow in his work and by keying the formulation of node-link networks to flow, stable,
efficient and accurate solution schemes result.  However, the role of pressure has not received the equivalent
acknowledgement.  Although the system dynamics are captured in Porsching’s Jacobian, the essence of the
system dynamics is not apparent.  Nahavandi [NAH70] comes much closer to recognizing the role of pressure
and explicitly casts the equation of state in rate form.  Unfortunately, the system essence is again not apparent
because Nahavandi’s form is very case specific.

Most other popular schemes, for instance, Agee [AGE83], use the algebraic form of the equation of state.
This treatment puts the pressure determination on the same level as heat transfer coefficients.  Thus, although
numerical solution of the resulting equation sets give correct answers (to within the accuracy of the
assumption), intuition is not generated  and time consuming iterations must be performed to get a pressure
consistent with the local state parameters.

We look first at such an iterative scheme and then consider a more efficient alternative (the rate method).

4.3 The Iterative Method

Given the density and enthalpy of a volume of water, the task at hand is to find the associated values of
pressure and temperature.  Figure 4.2 shows qualitatively the relation between density, ρ, and enthalpy, h,
for a given P.  At low enthalpy, the fluid is single phase liquid and the density is high.  As heat is added and
the fluid reaches saturation temperature, vapour is generated to form a two-phase mixture and the density
approaches the vapour density.  The curve is well behaved and continuous making it a suitable candidate for
numerical search routines.

We start the iteration procedure by guessing a pressure.  Usually in system transient simulation codes, the
value of P at a previous time step is a good choice.  Given P we calculate hfsat and hgsat, the saturation
enthalpies for the liquid and vapour phases, respectively.  If h < hfsat then the fluid is single phase liquid.  If
h >  hgsat then the fluid is single phase vapour.  Otherwise the fluid is a two-phase mixture with a quality, x
0 [0,1].

The case of two-phase equilibrium is considered first.  Subsequently, the equations are extended to cover
single phase and two-phase non-equilibrium fluid. 

4.3.1 Two-Phase Equilibrium Fluid

For two-phase fluid, the density and enthalpy are functions of the pressure and quality.  Since we know the
density, ρ, we can estimate the quality (xest) for the guessed P (assuming a homogeneous mixture) since:
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hest ' hf(P) % xest hfg(P) (4)

∆P '
∆h

(Mh/MP)ρ
(5)

P ' P % ∆P (6)

ρ ' ρ(P, T) and h ' h(P, T) (7)

ρ ' ρest %
Mρ
MT P

∆T %
Mρ
MP T

∆P (8)

h ' hest %
Mh
MT P

∆T %
Mh
MP T

∆P (9)

P ' P % ∆P and T ' T % ∆T (14)

and thus calculate the enthalpy based on the guessed P:

This estimated value of h will differ from the known value of h.  This difference is used to drive the iteration,
ie, to update the guessed pressure as illustrated in figure 4.3:

The denominator in equation 5 must be evaluated numerically if analytical expressions are not available.  The
pressure is updated via:

and the iteration is repeated until the pressure has converged to some tolerance.  The temperature is just the
temperature of saturated fluid at that pressure.

4.3.2 Single!Phase Sub-cooled and Superheated Fluid

For single phase fluid, the density and enthalpy are functions of P and T, ie:

For a guessed P and T, ρ and h can be found directly from the water property tables.  But this is just an
estimate since P and T are guessed.  The true values of ρ and h lie some distance away and, to a first
approximation, the true values and the estimated values are related by a Taylor’s series expansion:

Defining ∆ρ = ρ - ρest and ∆h = h - hest, we solve for ∆P and ∆T:

∆P '

Mh
MT P

∆ρ &
Mρ
MT P

∆h

Mρ
MP T

dh
dT P

&
Mρ
MT P

Mh
MP T

(10)

∆T '

Mh
MP T

∆ρ &
Mρ
MT T

∆h

Mρ
MT P

dh
dP T

&
Mρ
MP T

Mh
MT P

(11)

or, more compactly,
∆P ' G1P ∆ρ % G2P ∆h (12)

∆T ' G1T ∆ρ % G2T ∆h (13)
The G functions are summarized in table 4.2.  The derivatives must be evaluated numerically if analytical
expressions are not available.

The pressure and temperature are updated via:
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and the iteration is repeated until the pressure and temperature have converged to some tolerance.

4.4 The Rate Method

We next consider a scheme (called the Rate Method) that eliminates the need for iteration with no loss in
accuracy.  The case of two-phase equilibrium is considered first in order to illustrate the method.
Subsequently, the equations are extended to cover single phase and two-phase non-equilibrium fluid. 

4.4.1 Two-Phase Equilibrium

For a two!phase homogeneous mixture we have:
ν ' νf % xνfg (15)
h ' hf % xhfg (16)

where νfg / νg!νf and hfg / hg!hf.

We wish to relate rates of change of pressure to rates of change in ρ and h.  Specifically, we desire:

dP ' G1 dρ % G2 dh or dP
dt

' G1
dρ
dt

% G2
dh
dt (17)

since dρ&dt and dh&dt (or equivalently, dM&dt and dH&dt) are available from the mass and enthalpy
conservation equations.  First concentrating on the case of constant ρ (or ν), to obtain G2, we differentiate
equation (16) to gives:

dh
dt

'
Mh
MP ρ

dP
dt

'
Mhf

MP
% hfg

Mx
MP

% x
Mhfg

MP
dP
dt

. (18)

Using equation (15), holding ν constant (i.e., ρ = constant):

dx
dP

'

M
ν & νf

νfg

MP
' &

1
νfg

Mνf

MP
% x

Mνfg

MP
. (19)

Substituting this into equation (18) gives:

dh
dt

'
Mhf

MP
% x

Mhfg

MP
&

hfg

νfg

Mνf

MP
% x

Mνfg

MP
dP
dt

(20)

or equally:
dP
dt

'
νfg

νfg
Mhf

MP
% x

Mhfg

MP
& hfg

Mνf

MP
% x

Mνfg

MP

dh
dt

'
νfg

DENOMINATOR
dh
dt

' G2
dh
dt

.

(21)

This gives the pressure rate response due to an enthalpy rate change, holding ρ constant.

If we repeat the above but holding h constant we find:
dP
dt

'
& hfg

DENOMINATOR
dν
dt

'
hfg ν

2

DENOMINATOR
dρ
dt

' G1
dρ
dt

. (22)

Note that G1 and G2 are functions that depend only on the local saturation fluid properties and their slopes
at the local pressure.
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F1 ' hg νf & hf νg
F2 ' νg & νf
F3 ' hf & hg

F4 '
Mhg

MP
(νg & νf) &

Mνg

MP
(hg & hf)

F5 '
Mhf

MP
(νg & νf) &

Mνf

MP
(hg & hf)

Mg / x M
Mf / (1 x) M .

(28)

Combining equations 21 and 22 to get the total pressure rate response when both h and ρ are varying:
dP
dt

' G1 (P, x) dρ
dt

% G2 (P, x) dh
dt

. (23)

This is the rate form of the equation of state for two-phase equilibrium fluid in terms of the intensive rate
properties, dρ&dt and dh&dt, which are obtained from the continuity equations.

Equation 23 can be cast in the extensive form by noting that, since ρ = M&V and h = H&M,
dρ
dt

'
1
V

dM
dt

&
M
V 2

dV
dt (24)

and
dh
dt

'
1
M

dH
dt

&
H

M 2

dM
dt

. (25)

Substituting into equation 23 and collecting terms:
dP
dt

'
G1

V
&

G2 H

M 2

dM
dt

%
G2

M
dH
dt

&
G1 M

V 2

dV
dt

. (26)

After some simplification and rearrangement we find:

dP
dt

'

F1
dM
dt

% F2
dH
dt

% F3
dV
dt

Mg F4 % Mf F5

(27)

where:

The F functions are smooth, slowly varying functions of pressure (see appendix 4) provided good curve fits
are used.  The latest steam tables [HAA84] were used to fit saturated properties to less than 1&4% accuracy
using low order polynomials and exponentials [GAR88].  Considerable effort was spent on obtaining
accuracy and continuous derivatives over the full pressure range.  The fact that good fits are available means
that the F functions are well behaved which in turn makes the rate form of the equation of state extremely well
behaved, as shown later.

The G functions are also well behaved for the same reasons.

The F and G functions have direct physical interpretations which aid in generating intuition.  The F functions
relate changes in the extensive properties, M, H and V, to changes in pressure.  The G functions related
changes in the intensive properties, ρ and h, to changes in pressure.  Often, a simple numerical evaluation of
these functions during a simulation aids in developing an appreciation of the changing roles of the key actors
in a dynamic simulation.

For instance, because F1 is negative, we immediately see that adding mass to a fixed volume of liquid with
fixed total enthalpy will cause a depressurization (because the specific enthalpy, h = H&M, is decreased).  But,
since G1 is positive, an increase in density in a fluid of fixed specific enthalpy causes a pressurization.
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4.4.2 Single!Phase Sub-cooled and Superheated Fluid

For the single!phase sub-cooled or superheated case, we do not have to account for the sorting out between
phases as we did for the two phase case.  thus the derivation is more direct and less complex.  We could
simply use:

P ' π (ρ , h) (29)
to give:

dP
dt

'
MP
Mρ h

dρ
dt

%
MP
Mh ρ

dh
dt (30)

but, since the steam tables are given as a function of P and T, the slopes in equation (30) are not easily
obtained.  To cast the pressure rate equation in terms of the independent variables, P and T, consider:

ρ ' ρ (P , T) (31)
and

h ' h (P , T) (32)
Note that the non-equilibrium case requires the explicit tracking of the temperature in addition to pressure.
Taking derivatives of Equations (31) and (32):

dρ
dt

'
Mρ
MP T

dP
dt

%
Mρ
MT P

dT
dt (33)

and
dh
dt

'
Mh
MP T

dP
dt

%
Mh
MT P

dT
dt

. (34)

But we desire:
dP
dt

' G1P
dρ
dt

% G2P
dh
dt (35)

and
dT
dt

' G1T
dρ
dt

% G2T
dh
dt

. (36)

This is easily obtained by solving equations (33) and (34) for dP&dt and dT&dt to yield:

dP
dt

'

Mh
MT P

dρ
dt

&
Mρ
MT P

dh
dt

Mρ
MP T

dh
dT P

&
Mρ
MT P

Mh
MP T

(37)

and

dT
dt

'

Mh
MP T

dρ
dt

&
Mρ
MT T

dh
dt

Mρ
MT P

dh
dP T

&
Mρ
MP T

Mh
MT P

(38)

which is the intensive form we desire.

The extensive form is obtained as for the two!phase equilibrium case.  Equations (24) and (25) are substituted
into equations (37) and (38) and after rearrangement we find:

dP
dt

'

F1P
dM
dt

% F2P
dH
dt

% F3P
dV
dt

Mν F4P % MR F5P

(39)

and
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dT
dt

'

F1T
dM
dt

% F2T
dH
dt

% F3T
dV
dt

Mν F4T % MR F5T

(40)

where

F1P ' ρ Mh
MT P

% h Mρ
MT P

F2P ' &
Mρ
M t P

F3P ' & ρ2 Mρ
MT P

F4P ' 0 for subcooled, ' dρ
MP T

Mh
MT P

&
Mρ
MT P

dh
dP T

for superheated

F5P '
dρ
MP T

Mh
MT P

&
Mρ
MT P

dh
dP T

for subcooled ' 0 for superheated

F1T ' ρ Mh
MT P

% h Mρ
MT P

F2T ' &
Mρ
M t T

F3T ' & ρ Mh
MT T

F4T ' & F4P

F5T ' & F5P

Mν ' mass of vapour phase ' 0 for subcooled, ' M for superheated

MR ' mass of liquid phase ' M for subcooled ' 0 for superheated

(41)

4.4.3 Two!Phase Non!Equilibrium

The rate form for the equation of state for the two!phase non!equilibrium case is a simple extension of the
single-phase non-equilibrium case.  The liquid and vapour phases are treated independently to give:

dPk

d t
' G k

1P
dρk

d t
% G k

2P
dhk

d t
(42)

dTk

dt
' G k

1T
dρk

d t
% G k

2T
dhk

d t
(43)

where k represents either R or v for the liquid or vapour phases respectively.  In general, the 6 equation model
(3 continuity equations for each phase) would be used for the general unequal temperature, unequal velocity,
unequal pressure situation.  Thus dρk&dt and dhk&dt are available to the rate form of the equation of state.

The expressions for the F and G functions are summarized in tables 4.1 and 4.2.  These expressions cover the
full range from sub-cooled liquid to superheated steam.
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ρ(P,T) ' ρsat(T) %
Mρ
MP T

P & Psat(T) (44)

4.5 H2O Property Fits

To facilitate the calculation of water properties, the 1984 standard tables were accurately curve fitted as
discussed in detail in appendix 4.  These fitted functions are supplied in the files H2OPROP.FOR and
H2OPROP.C for user convenience.  These FORTRAN and C functions cover a wide range of pressures and
temperatures and should be sufficient for most nuclear reactor simulations, with the exception of severe
accidents that generate extreme conditions.  These functions are fast and more than accurate enough given
the other errors in system simulation [GAR88, GAR89, GAR92].

The basic overall approach taken in the curve fitting task was that, since the more difficult region to fit was
the transition from single to two-phase and since most power plants operate at or near this region, careful
attention would be paid the phase transition region at the expense of accuracy away from the saturation line,
if necessary.  Thus, the first major step was to accurately fit the saturation lines.  Then, since density, enthalpy
and other properties vary more strongly with T than with P (as shown in figure 4.4), the property in question,
say density, would be calculated based on the deviation from the saturation value at the given T, ie:

Figure 4.5 illustrates the strategy.  It should be obvious by now that not only the properties need to be fitted
but the slopes are needed as well.  Both the properties and the slopes of the properties must be free of
discontinuities if numerical searches are to converge.

The supplied code is divided into 3 levels:
- Level 1: the fitted functions 
- Level 2: derived functions and collections of functions (for convenience)
- Level 3: logic sorter and manager

Details on these routines are given at the end of appendix 4.  It is instructive to study appendix 4 in
conjunction with the supplied code (WATERA.FOR, PROPA.FOR, H2OPROP.FOR).

Having derived the desired rate forms for the equation of state, we proceed to chapter 5 to illustrate the utility
of the approach, as indicated in the Introduction.
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4.6 Exercises

1. Using the spread sheet macros for Microsoft Excel supplied by G.R. McGee (as per the memo at the
end of this chapter, calculate and plot the density, enthalpy, quality and void fraction for a range of
pressures ( 1 to 100 atmospheres) and temperatures(50 EC to 350 EC).  Make sure you cover the
subcooled, saturated and superheated ranges.

2. Using the supplied code, WATERA.EXE:
a. Calculate ρ and h for P=10 MPa and T=300 EC.  Increase the temperature in steps to see the

approach to two-phase.
b. Using ρ and h slightly different than that found in (a), calculate P and T.
c. Practice calculating ρ given h and P.

3. Using the supplied skeleton code NODE.C:
a. Fill in the missing code required to calculate P and T given ρ and h.
b. Use the code to calculate ∆P and ∆T when a node experiences a ∆M, a ∆H or a ∆V.

Compare your answers to WATERA.EXE.
c. Use the code to calculate ∆P and ∆T when a node experiences a ∆ρ and a ∆h.  Compare your

answers to WATERA.EXE.
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Case F1 F2 F3 F4 F5

2φ equilibrium 
(all derivatives
along saturation

line)

hg νf & hf νg νfg hfg
Mhg

MP
νfg &

Mνg

MP
hfg

Mhf

MP
νfg &

Mνf

MP
hfg

1φ non-
equilibrium

pressure ρ Mh
MT P

% h Mρ
MT P

&
Mρ
MT P

& ρ2 Mh
MT P

0 subcooled

Mρ
MP T

Mh
MT P

&
Mρ
MT P

Mh
MP T

superheated

Mρ
MP T

Mh
MT P

&
Mρ
MT P

Mh
MP T

subcooled
0 superheated

1φ non-
equilibrium
temperature

ρ Mh
MP T

% h Mρ
MP T

&
Mρ
MP T

& ρ2 Mh
MP T

& F4P & F5P

Table 4.1 Summary of the F functions for the rate form of the equation of state

Case G1 G2

2φ equilibrium 
(all derivatives
along saturation

line)

hfg ν
2

νfg
Mhf

MP
% x

Mhfg

MP
& hfg

Mνf

MP
% x

Mνfg

MP

νfg

νfg
Mhf

MP
% x

Mhfg

MP
& hfg

Mνf

MP
% x

Mνfg

MP

1φ non-equilibrium
pressure

Mh
MT P

Mρ
MP T

Mh
MT P

&
Mρ
MT P

Mh
MP T

&
Mρ
MT P

Mρ
MP T

Mh
MT P

&
Mρ
MT P

Mh
MP T

1φ non-equilibrium
temperature

Mh
MP T

Mρ
MT P

Mh
MP T

&
Mρ
MP T

Mh
MT P

&
Mρ
MP T

Mρ
MT P

Mh
MP T

&
Mρ
MP T

Mh
MT P

Table 4.2 Summary of the G functions for the rate form of the equation of state
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Figure 4.1 P-ν-T surface for water.

Figure 4.2 Numerical search for P given ρ and h for a two-phase mixture.



Equation of State 4-13

D:\TEACH\Thai-HTS2\chap4.wp8   May 22, 2003   8: 3

Figure 4.3 Error correction scheme for pressure in two-phase.

Figure 4.4 Density vs. pressure at various temperatures in subcooled water.
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Figure 4.5 Basis for curve fitting in the subcooled region.
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Instructor’s notes:

The exercises are geared to familiarizing the student with 
- the performance of water property calculations and the response of a volume of water to various
perturbations
- the use of the spreadsheet and macros
- the use of an available code for water property calculation
- the use of a  C compiler
- writing simple C code.

This should lead the student naturally into the rate form of the equation of state discussed in the next chapter.


