Lecture 8 – Safety Goals

Dr. V.G. Snell* Nuclear Reactor Safety Course McMaster University

*Material on human error from R. Duffey gratefully acknowledged

02/11/2009 10:43 PM

02/11/2009 10:43 PM

Is this a useful safety goal?

European Pressurized Reactor:

"Accidents liable to lead to significant early radioactive releases, in particular accidents involving high-pressure core meltdown, must for their part be 'practically eliminated"

How Safe is Safe Enough?

- Require numerical, not qualitative goal, e.g.:
- "The annual risk of death to the most exposed member of the public due to accidents in a reactor should be small in comparison to his/her total risk of premature death."

Concepts

- Compare like to like risk of premature death
- Compare risk from nuclear power to risk from all other sources – why?
 - Where are *benefits* compared?
 - How much of the fuel cycle is included?
 - What about global effects?

Concepts – cont'd

3. Limit risk to *individual*

- Exclude (or assume bounded): population exposure, land contamination, effects on animals & plants, psychological effects
- 4. Goal refers to *public*, not workers
 - Acceptance of risk is 'part of a job'
 - o Industrial hazards dominate anyway
- 5. What is the risk of *not* having nuclear power?

Safety Goal is not unique; other models.

Sub-Goals

- The annual risk of *prompt* death to the most exposed member of the public due to accidents in a reactor should be small in comparison to his/her total annual risk of prompt death due to all accidents.
- The annual risk of *fatal cancer* to the most exposed member of the public due to accidents in a reactor should be small in comparison to his/her total annual risk of fatal cancer due to all causes.

Risk of Dying in Canada

- Accidents fifth leading cause of death
- Rate of 27.6 deaths / 100,000 people /a
- Average person's risk of death from an accident is 3 x 10⁻⁴ per year, so e.g.:
- 'The likelihood of a large release from a nuclear power plant in an accident should be less than 3 per 10⁶ reactor years'

Occupational Risk of Death in the U.S.

*Data for 2008 are preliminary.

NOTE: In 2008, CFOI implemented a new methodology, using hours worked for fatality rate calculations rather than employment. For additional information on the fatality rate methodology changes please see http://www.bls.gov/iif/oshnotice10.htm.

SOURCE: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2009.

02/11/2009 10:43 PM

Cause of Death	Mortality rate (/100,000-year)
Motor vehicle accidents	8.7
Falls	5.4
Poisoning	2.8
Homicide	1.7
Drowning	0.8
Fire	0.7

Table 6-2 - Cause of Death in Canada (Accident, non-Occupational)

Risk of Cancer in Canada

- Malignant neoplasm second leading cause of death
- Rate of 173 deaths per 100,000 people /a
- Average person's risk of dying from cancer is 1.7 x 10⁻³ per year (~ 13% over 75-years)
 - 100 person-Sv \Rightarrow ~5 fatal cancers
 - "Averaged" risk of 5 x 10⁻² fatal cancers per Sv
 - Equivalent dose is 0.035 Sv per year per person

Possible Safety Sub-Goal for Delayed Fatalities

 Maximum time-averaged individual dose from accidents should be less than 0.35 mSv per year, averaged over a group of people

~ 35% natural background radiation

- Should nuclear power be 'safer' than background radiation?
- Requires summation of all accidents

Risk Acceptance

- Higher values accepted for:
 - Occupational risk
 - Voluntary risk
 - Familiar risk
 - Perceived direct benefit
- Lower values accepted for:
 - Involuntary risk
 - Unfamiliar risk
 - `Dread'

02/11/2009 10:43 PM

FIGURE 2 COMPARISON OF SAFETY GOALS AND "NATURAL" RESTRICTIONS

Figure 2-4 Consultative Document C-6 Limits

Lecture 8 – Safety Goals R6

02/11/2009 10:43 PM

14

International Goals

Existing reactors:

- The frequency of a core melt (severe core damage) accident must be less than 10⁻⁴ per reactor-year
- The frequency of a large release must be less than 10⁻⁵ per reactor-year
- i.e., CCF probability < 0.1
- New reactors: factor of 10 lower

UK Safety Assessment Principles

Maximum effective dose (mSv)	Total predicted frequency, per year	
	Basic Safety Limit	Basic Safety Objective
0.1 - 1	1	10-2
1 - 10	10-1	10-3
10 - 100	10-2	10-4
100 - 1000	10-3	10 ⁻⁵
>1000	10-4	10-6

RD-337 - CNSC Safety Goals

Basis:

- Individuals should bear no significant additional risk to life and health
- Societal risks to life and health shall be comparable to or less than the risks of generating electricity by viable competing technologies and should not be a significant addition to other societal risks

Numerical Values

Core Damage Frequency: The sum of frequencies of all event sequences that can lead to significant core degradation is less than 10⁻⁵ per reactor year

Small Release Frequency: The sum of frequencies of all event sequences that can lead to a release to the environment of more than 1015 becquerel of iodine-131 is less than 10⁻⁵ per reactor year. A greater release may require temporary evacuation of the local population.

Large Release Frequency: The sum of frequencies of all event sequences that can lead to a release to the environment of more than 10¹⁴ becquerel of cesium-137 is less than 10⁻⁶ per reactor year. A greater release may require long term relocation of the local population.

02/11/2009 10:43 PM

Limitations of Risk Approach

- All events have to be identified and summed
 - Hard to do early in design, no useful measure
- No risk aversion in simplest application
 - Is it necessary?
- Frequency must be cut-off
 - What does a frequency of 10⁻⁸ / year mean?
- Not all events can be quantified
 - Severe external events; sabotage, terrorism & war
- Innovative designs
 - Incomplete reliability database

02/11/2009 10:43 PM

Are We Kidding Ourselves?

- Safety goals aimed at design
 - Essential to give design a logical base
 - Not readily confirmed in practice
- Assume that technology continually improves, so safety goals get more and more stringent
- Ignores the learning/forgetting hypothesis

From R. Duffey...

- The major cause of accidents is human error
- The causes are always obvious and preventable afterwards
- There is usually a confluence of factors as a cause
- There is/are no "Zero Defects"

Commercial Aircraft Near Miss Rates

Is 1 per 200,000 the Best One can Do?

02/11/2009 10:43 PM

How To Learn From Mistakes

- Mistakes are necessary to learn
- Technology change is not enough
- Be careful when using safety goals outside design
- Comprehensive indicator sets are now in use which are risk and performance-based
- Wide sharing of industry near-misses