Lecture 5 - Probability

Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University

Lecture 5 - Probability.ppt Rev. 5

Probability - Basic Ideas

$$
\begin{align*}
\mathrm{P}(\mathrm{~A}) & \equiv \text { probability of event } \mathrm{A} \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{x}}{\mathrm{n}}\right) \tag{1}
\end{align*}
$$

(Axiom \#1) $\quad 0 \leq \mathrm{P}(\mathrm{A}) \leq 1$
(Axiom \#2): $\quad \mathrm{P}(\mathrm{A})+\mathrm{P}(\overline{\mathrm{A}})=1 \quad$ where $\overline{\mathrm{A}}$ means "not A ".

Lecture 5 - Probability.ppt Rev. 5

Intersection

$$
\begin{gather*}
A_{1} \cap A_{2} \quad \text { or } A_{1} A_{2} \text { or } A_{1} \text { AND } A_{2} \\
\text { (This is } \underline{\text { not }} A_{1} \text { times } A_{2} \text {) } \tag{1}
\end{gather*}
$$

$$
\text { (Axiom\#3) } \quad \begin{align*}
\mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2}\right) & =\mathrm{P}\left(\mathrm{~A}_{1} \mid \mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right) \tag{1}\\
& =\mathrm{P}\left(\mathrm{~A}_{2} \mid \mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{1}\right)
\end{align*}
$$

In Pictures

If the events are independent:

```
P(A2| A1) = P(A2)
```

Lecture 5 - Probability.ppt Rev. 5

Probability of Two Shutoff Rods Failing

- $P(A 1)=P(A 2)=0.001$
- If independent, P(A1A2)
$=(0.001)^{2}=10^{-6}$
- Suppose there is a common cause failure 10% of the time
- $P(A 1)=P(A 2)=0.0009$
(random) +0.0001 (CC)

Two Shutoff Rods - cont'd

- $P(A 1 \mid A 2)=0.9 * 0.001+0.1$ * $1=$ 0.1009
- $P(A 1 A 2)=0.1009 * 0.001=$ 0.0001009 ~ 10^{-4}
- A 10% common cause probability has increased the combined failure by a factor of 100 !

Generalization

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} \ldots . \mathrm{A}_{\mathrm{N}}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2} \mid \mathrm{A}_{1}\right) \ldots \mathrm{P}\left(\mathrm{~A}_{\sqrt{ }} \mid \mathrm{A}_{1} \mathrm{~A}_{2} \ldots . \mathrm{A}_{\mathrm{N}-1}\right) \tag{1}
\end{equation*}
$$

If the events are independent:

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} \ldots . \mathrm{A}_{\mathrm{N}}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right) \ldots \mathrm{P}\left(\mathrm{~A}_{\mathrm{N}}\right) \tag{1}
\end{equation*}
$$

For example: Probability of flipping heads twice in succession $=(1 / 2) *(1 / 2)$

Union

$$
\begin{gather*}
\mathrm{A}_{1} \cup \mathrm{~A}_{2} \quad \text { or } \mathrm{A}_{1}+\mathrm{A}_{2} \quad \text { or } \mathrm{A}_{1} \text { OR } \mathrm{A}_{2} \tag{1}\\
\mathrm{P}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right)-\mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2}\right) \tag{1}
\end{gather*}
$$

Total area $=P(A 1]+P(A 2)-P(A, 1,2)$

Why subtract P(A1A2)?
Think of probability of getting one head when you flip two coins:
$P($ first head OR second head)
$=\mathbf{P}($ first head $)+\mathbf{P (s e c o n d ~ h e a d) ~}-$
\mathbf{P} (both heads)
$=0.5+0.5-0.25$
$=0.75$

Lecture 5 - Probability.ppt Rev. 5

Generalizing

$$
\begin{align*}
\mathrm{P}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{N}}\right) & =\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{N}}\right)-\sum_{\mathrm{n}=1}^{\mathrm{N}-1} \sum_{\mathrm{m}=\mathrm{n}+1}^{\mathrm{N}} \mathrm{P}\left(\mathrm{~A}_{\mathrm{n}} \mathrm{~A}_{\mathrm{m}}\right) \tag{1}\\
& \pm \ldots+(-1)^{\mathrm{N}-1} \mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{N}}\right)
\end{align*}
$$

For independent events

$$
\begin{equation*}
1-\mathrm{P}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\ldots+\mathrm{A}_{\mathrm{N}}\right)=\prod_{\mathrm{n}=1}^{\mathrm{N}}\left[1-\mathrm{P}\left(\mathrm{~A}_{\mathrm{N}}\right)\right] \tag{1}
\end{equation*}
$$

Lecture 5 - Probability.ppt Rev. 5

Rare Independent Events

$$
\begin{gather*}
P\left(A_{1}+A_{2}+\ldots A_{N}\right) \simeq \sum_{n=1}^{N} P\left(A_{N}\right) \tag{1}\\
\mathrm{P}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} \ldots . \mathrm{A}_{\mathrm{N}}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right) \ldots . . \mathrm{P}\left(\mathrm{~A}_{N}\right) \tag{1}
\end{gather*}
$$

Lecture 5 - Probability.ppt Rev. 5

Bayes Theorem

Start from event B and $A_{\mathbf{n}}$ mutually exclusive events or hypotheses, where $\mathrm{n}=\mathbf{1 , \ldots , \mathrm { N }}$

$$
\begin{equation*}
P\left(A_{n} \mid B\right)=\frac{P\left(A_{n}\right) P\left(B \mid A_{n}\right)}{\sum_{m=1}^{N} P\left(A_{m}\right) P\left(B \mid A_{m}\right)} \tag{1}
\end{equation*}
$$

Bayes with Known Statistics

- Radiographing a Class I pipe for a defect
- Known likelihood of a defect is one per 100,000 radiographs
- Known likelihood of instrument giving false positive is 1%
- Known accuracy or likelihood of indicating a defect when there is a defect is 99%.
- One test indicates a defect
- What is the probability that the pipe actually has a defect?

Working it out...

A: pipe has a defect, so $P(A)=0.00001$
B : instrument says that pipe has a defect, so $P(B)=0.01$ approx.
$\mathrm{B} \mid \mathrm{A}$: instrument says pipe has a defect when it has a defect, so $P(B \mid A)=0.99$
Want likelihood of a defect when instrument gives a positive

$$
\begin{aligned}
P(A \mid B) & =[P(B \mid A)][P(A)] / P(B) \\
& =0.99 \times 0.00001 / 0.01 \\
& =0.00099
\end{aligned}
$$

How worried should you be if you get a positive test for a rare disease? Lecture 5 - Probability.ppt Rev. 5

Bayes with Unknown Statistics

- How to determine the frequency of an event which has not occurred
- Take a number of possibilities for frequency
- Assign (guess) a likelihood of each possibility being correct
- Use Bayes theorem to see if your guesses are sensible
- Problem: bad guess = silly result

Probabilities for "OR"ed Events

- Take two dice. What is the probability that die 1 shows a six OR die 2 shows a six?
- Recall

$$
P\left(A_{1}+A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} A_{2}\right)
$$

Total area $=P[\hat{A} 1]+P[(A)] P(A, 1, A 2)$

Lecture 5 - Probability.ppt Rev. 5

Work it out...

- Since
$\mathrm{P}\left(\mathrm{A}_{1}\right)=\mathrm{P}\left(\mathrm{A}_{2}\right)=1 / 6$, and $\mathrm{P}\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)=$ $1 / 36$, then

$$
P\left(A_{1}+A_{2}\right)=1 / 6+1 / 6-1 / 36=11 / 36 .
$$

Table of Combinations

Die 1	Die 2	Number of Cases showing 'six'
1	$1,2,3,4,5,6$	1
2	$1,2,3,4,5,6$	1
3	$1,2,3,4,5,6$	1
4	$1,2,3,4,5,6$	1
5	$1,2,3,4,5,6$	1
6	$1,2,3,4,5,6$	6
Total Combinations Showing ‘six'	11	

Lecture 5 - Probability.ppt Rev. 5

Another Way

P (at least one six) $=1-\mathrm{P}$ (no sixes)
Probability of no sixes for each die $=[1-$ the probability of getting a six]
Probability of getting no sixes for both dies = the product of the probability of getting no six for each die
$P($ no six for die 1$)=1-P($ six for die 1$)$
$P($ no six for die 2$)=1-P($ six for die 2$)$
$P($ no six for die 1 AND no six for die 2) $=$
[1-P(six for die 1)][1-P(six for die 2)]
Lecture 5 - Probability.ppt Rev. 5

Numbers

$$
\begin{align*}
& P(\text { at least one six) } \\
& =1-P(\text { no sixes }) \\
& =1-[1-P(\text { six for die } 1)][1-P(\text { six for die } 2)] \\
& =1-[1-1 / 6][1-1 / 6]=1-25 / 36=11 / 36 \\
& \quad 1-P\left(A_{1}+A_{2}+\ldots+A_{N}\right)=\prod_{n=1}^{N}\left[1-P\left(A_{N}\right]\right] \tag{1}
\end{align*}
$$

Why bother?

- Examples drive theory and understanding, not the reverse
- Often using $\mathrm{P}($ not A$)$ or $P(\bar{A})$ is more useful
- Which would you use for 1000 dice?

Demand and Continuous

- Examples of demand systems
- Shutdown, stepback
- ECC initiation
- Containment box-up
- Examples of continuous systems
- HTS pump motor
- Air coolers
- Reactor control system

Mixed Systems - e.g., ECC

- Initiation - demand
- Switch from HPECI to MPECI to LPECI demand
- Crash cooldown - demand
- MPECI and LPECI Operation continuous
- Heat exchangers, pumps
- Limited mission time

Demand Systems

- $\mathrm{D}_{\mathrm{n}}=\mathrm{n}^{\mathrm{dh}}$ demand

$$
\mathrm{P}\left(\mathrm{D}_{\mathrm{n}}\right)=\text { probability of success on demand } \mathrm{n}
$$

$$
\mathrm{P}\left(\overline{\mathrm{D}}_{\mathrm{n}}\right)=\text { probability of failure on demand } \mathrm{n}
$$

$$
\mathrm{W}_{\mathrm{n}}=\text { system works for each demand up to and including demand } \mathrm{n} \text {. }
$$

$$
\begin{align*}
& \therefore P\left(W_{n-1}\right)=P\left(D_{1} D_{2} D_{3} \ldots D_{n-1}\right) \tag{1}\\
& P\left(\bar{D}_{n} W_{n-1}\right)=P\left(\bar{D}_{n} \mid W_{n-1}\right) P\left(W_{n-1}\right) \tag{2}
\end{align*}
$$

So

$$
\begin{align*}
\mathrm{P}\left(\mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3} \ldots \mathrm{D}_{\mathrm{n}-1} \overline{\mathrm{D}}_{\mathrm{n}}\right) & =\mathrm{P}\left(\overline{\mathrm{D}}_{\mathrm{n}} \mid \mathrm{W}_{\mathrm{n}-1}\right) \mathrm{P}\left(\mathrm{~W}_{\mathrm{n}-1}\right) \\
& =\mathrm{P}\left(\overline{\mathrm{D}}_{\mathrm{n}} \mid \mathrm{D}_{1} \mathrm{D}_{2} \ldots \mathrm{D}_{\mathrm{n}-1}\right) \cdot \mathrm{P}\left(\mathrm{D}_{\mathrm{n}-1} \mid \mathrm{D}_{1} \mathrm{D}_{2} \ldots \mathrm{D}_{\mathrm{n}-2}\right) \ldots \mathrm{P}\left(\mathrm{D}_{2} \mid \mathrm{D}_{1}\right) \mathrm{P}\left(\mathrm{D}_{1}\right) \tag{3}
\end{align*}
$$

If all demands are alike and independent, this reduces to:

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{D}_{1} \mathrm{D}_{2} \ldots \mathrm{D}_{\mathrm{n}-1} \overline{\mathrm{D}}_{\mathrm{n}}\right)=\mathrm{P}(\overline{\mathrm{D}})[1-\mathrm{P}(\overline{\mathrm{D}})]^{\mathrm{n}-1} \tag{4}
\end{equation*}
$$

Lecture 5 - Probability.ppt Rev. 5

Failure Dynamics

$$
\begin{align*}
\mathrm{f}(\mathrm{t}) \mathrm{dt} & =\text { probability of failure in the interval } \mathrm{dt} \text { at time } \mathrm{t} \\
\mathrm{~F}(\mathrm{t}) & =\text { accumulated failure probability } \tag{1}\\
& =\int_{0}^{\mathrm{t}} \mathrm{f}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}
\end{align*}
$$

Assuming that the device eventually fails the reliability, $\mathrm{R}(\mathrm{t})$ is defined as

$$
\begin{aligned}
\mathrm{R}(\mathrm{t}) & =1-\mathrm{F}(\mathrm{t}) \\
& =\int_{0}^{\infty} \mathrm{f}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}-\int_{0}^{\mathrm{t}} \mathrm{f}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime} \\
& =\int_{\mathrm{t}}^{\infty} \mathrm{f}\left(\mathrm{t}^{\prime}\right) \mathrm{dt}^{\prime}
\end{aligned}
$$

$$
\text { Lecture } 5 \text { - Probability.ppt Rev. } 5
$$

Conditional Failure Rate - 1

$$
\begin{equation*}
\mathrm{f}(\mathrm{t})=-\frac{\mathrm{dR}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{dF}(\mathrm{t})}{\mathrm{dt}} \tag{1}
\end{equation*}
$$

?(t$)=$ failure rate at time t given successful operation up to time t

$$
\begin{align*}
\mathrm{f}(\mathrm{t}) \mathrm{dt} & =?(\mathrm{t}) \mathrm{dt} \mathrm{R}(\mathrm{t}) \\
\text { or } \mathrm{f}(\mathrm{t}) & =?(\mathrm{t}) \mathrm{R}(\mathrm{t}) \\
& =-\frac{\mathrm{dR}}{\mathrm{dt}} \tag{1}
\end{align*}
$$

Conditional Failure Rate - 2

$$
\begin{equation*}
\mathrm{R}(\mathrm{t})=\exp \left[-\int_{0}^{\mathrm{t}} ?(\mathrm{t}) \mathrm{dt}\right] \tag{1}
\end{equation*}
$$

If λ is constant (random failures)

$$
R(t)=e^{-\lambda t}
$$

Summary of Terms

Word description	Symbol $=$First relationship	$=$Second relationship	$=$Third relationship
Hazard rate	$\lambda(t)$	$-(1 / R) d R / d t$	$f(t) /(1-F(t))$
Reliability	$R(t)$	$\int_{t}^{\infty} f(\tau) d \tau$	$1-F(t) / R(t)$
Cumulative failure	$F(t)$	$\int_{0}^{t} f(\tau) d \tau$	$1-R(t)$
probability Failure probability density	$f(t)$	$d F(t) / d t$	$-d R(t) / d t$

Figure 4-5 - A summary of equations relating ? $(t), R(t), F(t)$, and $f(t)$

Mean Time to Failure

$$
M T T F=\frac{\int_{0}^{\infty} t f(t) d t}{\int_{0}^{\infty} f(t) d t}=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\frac{1}{\lambda}
$$

(for random failures)

Typical Behaviour of λ

Figure 4-6 - Time dependence of conditional failure (hazard)rate [Source: Ref. 1, page 26]

$$
\text { Lecture } 5 \text { - Probability.ppt Rev. } 5
$$

Availability

Availability $=$ Reliability + effect of repair $R(\mathrm{t}) \leq \mathrm{A}(\mathrm{t}) \leq 1$

With no repair, $R(t)=A(t)$

Continuous Operation

For random failures

$$
\begin{aligned}
& R(t)=e^{-\lambda t} \\
& F(t)=1-R(t)
\end{aligned}
$$

Lecture 5 - Probabilitylppt Rev. 5

With Repair

In any time interval $0<t<\tau$
between repairs
$\mathrm{F}(\mathrm{t})=\lambda \mathrm{t}$
Average is $\langle\mathrm{F}\rangle=\lambda \tau / 2$

Example - One Shutoff Rod

Suppose $\lambda=0.02 /$ year
Want Unavailability $\equiv \bar{A} \equiv(1-\mathrm{A}) \equiv \mathrm{F} \leq 10^{-3}$ (per demand)
$\bar{A}=\lambda \tau / 2$
So $\tau \leq 1$ year

Meeting Reliability Targets

- Increase repair frequency τ until <F> meets the target
- Increase test frequency and fix if it fails on test

Event trees and Fault Trees

- Simplified treatment
- Fault tree - frequency of an initiating event
- Focus on how an event can occur
- Event tree - frequency of core damage
- Focus on mitigating systems, given an event

Event Tree

LARGE LOCA EVENT TREE FOR CANDUG

Fault Tree

Fault Tree Symbols - Events

Basic Event

Undeveloped Event

Intermediate or Top
Event

Lecture 5 - Probability.ppt Rev. 5

Fault Tree Symbols - Gates

AND Gate

OR gate

INHIBIT Gate

Steps in Creating a Fault Tree

- Define top event
- E.g. system failure
- Write down the immediate causes of the top event
- If more than one, decide whether they are joined by AND or OR gates
- For each of these lower events, expand them similarly
- Continue until you can no longer break the event down, or you know the probability of failure

Example Fault Tree

Evaluation

$$
\begin{array}{ll}
\text { Top } & =X \cdot Y \\
X & =A+X 1 \\
Y & =D+Y 1 \\
X 1 & =B+C \\
Y 1 & =B+E \\
\text { Therefore: } \\
X & =A+B+C \\
Y & =D+B+E \\
T O P & =(A+B+C) \cdot(D+B+E) \\
& =A D+A B+A E+B D+B B+B E+C D+C B+C E \\
& =B+A D+C D+A E+C E
\end{array}
$$

Lecture 5 - Probability.ppt Rev. 5

Develop a Fault Tree for This

Demand failure probabilities for each component:
Pump (P): 0.01
Valve (V): 0.01
Signal (S): 0.001

Lecture 5 - Probability.ppt Rev. 5

Minimal Cut Set

- Cut set = any basic event or combination of basic events that will cause the top event to occur
- Minimal cut set = the smallest combination of events which, if they all occur, will cause the top event to occur

Minimal Cut Set Gives Reduced Fault Tree

Lecture 5 - Probability.ppt Rev. 5

Event Tree Exercise

- A LOCA in a CANDU calls on the following safety functions to prevent a release of radioactivity to the environment:
- Shutdown (either of two shutdown systems)
- Emergency Core Cooling
- Containment (box-up and cooling)
- If ECC fails, the moderator can prevent fuel melting
- If the demand unavailability of each of the four safety systems is 10^{-3} and of the moderator is 10^{-2}, draw the event tree and determine:
- The frequency of severe core damage
- The frequency of a large release

