Lecture 5 – Probability

Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

Probability – Basic Ideas

$$P(A) = \text{probability of event } A$$
$$= \lim_{n \to \infty} \left(\frac{x}{n}\right)$$
(1)

$$(Axiom \#1) 0 \le P(A) \le 1 (1)$$

(Axiom #2): $P(A) + P(\overline{A}) = 1$ where \overline{A} means "not A". (1)

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

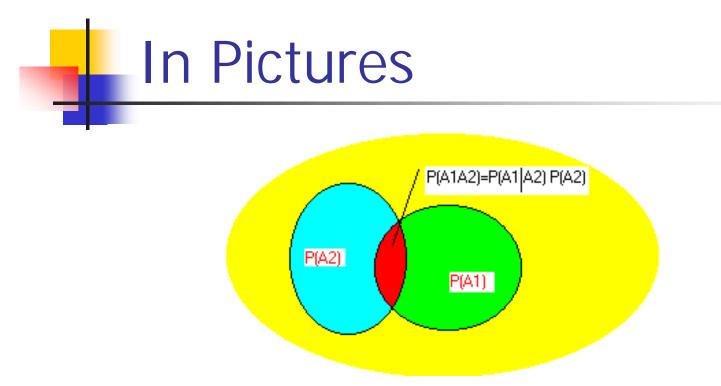
$$\begin{array}{cccc} A_1 \cap A_2 & \text{or } A_1 A_2 & \text{or } A_1 \text{ AND } A_2 \\ & \text{(This is } \underline{\text{not }} A_1 \text{ times } A_2) \end{array} \tag{1}$$

$$(Axion#3) \qquad \begin{array}{r} P(A_1 \ A_2) = P(A_1|A_2) \ P(A_2) \\ = P(A_2|A_1) \ P(A_1) \end{array} \tag{1}$$

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs



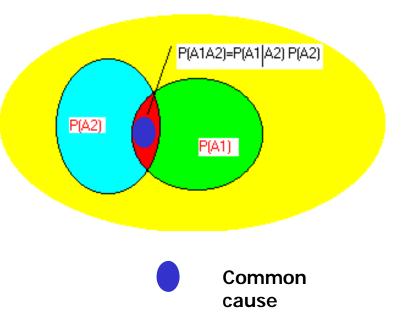
If the events are independent:

P(A2|A1) = P(A2)

Lecture 5 – Probability.ppt Rev. 5

Probability of Two Shutoff Rods Failing

- P(A1) = P(A2) = 0.001
- If independent, P(A1A2)= $(0.001)^2 = 10^{-6}$
- Suppose there is a common cause failure 10% of the time
- P(A1) = P(A2) = 0.0009
 (random) + 0.0001
 (CC)



Two Shutoff Rods – cont'd

- P(A1|A2) = 0.9 * 0.001 + 0.1 * 1 = 0.1009
- $P(A1A2) = 0.1009 * 0.001 = 0.0001009 \sim 10^{-4}$

A 10% common cause probability has increased the combined failure by a factor of 100!

$$P(A_1A_2...A_N) = P(A_1)P(A_2|A_1)...P(A_N|A_1A_2...A_{N-1})$$
(1)

If the events are independent:

$$P(A_1 A_2 \dots A_N) = P(A_1) P(A_2) \dots P(A_N)$$
(1)

For example: Probability of flipping heads twice in succession = (1/2) * (1/2)

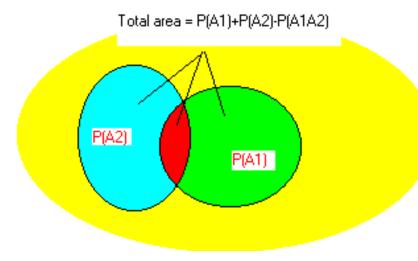
Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

$$A_1 \cup A_2 \quad \text{or} \quad A_1^+ A_2 \quad \text{or} \quad A_1 \text{ OR } A_2. \tag{1}$$

$$P(A_1 + A_2) = P(A_1) + P(A_2) - P(A_1A_2)$$
(1)



Why subtract P(A1A2)?

Think of probability of getting one head when you flip two coins:

P(first head OR second head)

= P(first head) + P(second head) - P(both heads)

= 0.5 + 0.5 - 0.25

= 0.75

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

Generalizing

$$P(A_{1}+A_{2}+...+A_{N}) = \sum_{n=1}^{N} P(A_{N}) - \sum_{n=1}^{N-1} \sum_{m=n+1}^{N} P(A_{n}A_{m}) \\ \pm ...+(-1)^{N-1} P(A_{1}A_{2}...A_{N})$$
(1)

For independent events

1 - P(A₁+A₂+...,+A_N) =
$$\prod_{n=1}^{N} [1-P(A_N)]$$
 (1)

20/10/2009 9:18 PM

vgs

Rare Independent Events

$$P(A_1 + A_2 + \dots A_N) \simeq \sum_{n=1}^N P(A_N)$$
 (1)

$$P(A_1 A_2 \dots A_N) = P(A_1) P(A_2) \dots P(A_N)$$
(1)

Lecture 5 – Probability.ppt Rev. 5

Start from event *B* and A_n mutually exclusive events or hypotheses, where n = 1, ..., N

$$P(A_n|B) = \frac{P(A_n) P(B|A_n)}{\sum_{m=1}^{N} P(A_m) P(B|A_m)}$$
(1)

20/10/2009 9:18 PM

vgs

Bayes with Known Statistics

- Radiographing a Class I pipe for a defect
- Known likelihood of a defect is one per 100,000 radiographs
- Known likelihood of instrument giving false positive is 1%
- Known accuracy or likelihood of indicating a defect when there is a defect is 99%.
- One test indicates a defect
- What is the probability that the pipe actually has a defect?

Lecture 5 – Probability.ppt Rev. 5

Working it out...

- A: pipe has a defect, so P(A) = 0.00001
- B: instrument says that pipe has a defect, so P(B)=0.01 approx.
- B|A: instrument says pipe has a defect when it has a defect, so P(B|A) = 0.99
- Want likelihood of a defect when instrument gives a positive
- P(A|B) = [P(B|A)][P(A)]/P(B)
 - = 0.99 x 0.00001 / 0.01
 - = 0.00099

How worried should you be if you get a positive test for

a rare disease?Lecture 5 – Probability.ppt Rev. 5

Bayes with Unknown Statistics

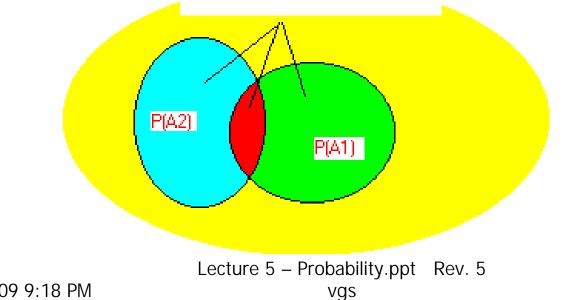
- How to determine the frequency of an event which has not occurred
 - Take a number of possibilities for frequency
 - Assign (guess) a likelihood of each possibility being correct
 - Use Bayes theorem to see if your guesses are sensible
- Problem: bad guess = silly result

Lecture 5 – Probability.ppt Rev. 5

Probabilities for "OR"ed Events

- Take two dice. What is the probability that die 1 shows a six OR die 2 shows a six?
- Recall
 - $P(A_1+A_2) = P(A_1) + P(A_2) P(A_1A_2)$

Total area = P(A1)+P(A2)-P(A1A2)



• Since $P(A_1) = P(A_2) = 1/6$, and $P(A_1A_2) = 1/36$, then

$$P(A_1 + A_2) = 1/6 + 1/6 - 1/36 = 11/36.$$

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

Table of Combinations

Die 1	Die 2	Number of Cases showing 'six'
1	1,2,3,4,5,6	1
2	1,2,3,4,5,6	1
3	1,2,3,4,5,6	1
4	1,2,3,4,5,6	1
5	1,2,3,4,5,6	1
6	1,2,3,4,5,6	6
Total Combinations Showing 'six'		11

Lecture 5 – Probability.ppt Rev. 5

Another Way

- P(at least one six) = 1 P(no sixes)
- Probability of no sixes for each die = [1 the probability of getting a six]
- Probability of getting no sixes for both dies = the product of the probability of getting no six for each die

P(no six for die 1) = 1 - P(six for die 1)

P(no six for die 2) = 1 - P(six for die 2)

P(no six for die 1 AND no six for die 2) =

[1 - P(six for die 1)][1 - P(six for die 2)]

Lecture 5 – Probability.ppt Rev. 5

P(at least one six)

$$= 1 - P(no sixes)$$

= 1 - [1 - P(six for die 1)][1 - P(six for die 2)]

$$1 - P(A_1 + A_2 + \dots + A_N) = \prod_{n=1}^{N} [1 - P(A_N)]$$
(1)

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

- Examples drive theory and understanding, not the reverse
- Often using P(not A) or $P(\overline{A})$ is more useful
- Which would you use for 1000 dice?

Demand and Continuous

Examples of **demand** systems

- Shutdown, stepback
- ECC initiation
- Containment box-up
- Examples of continuous systems
 - HTS pump motor
 - Air coolers
 - Reactor control system

Lecture 5 – Probability.ppt Rev. 5

Mixed Systems – e.g., ECC

- Initiation demand
- Switch from HPECI to MPECI to LPECI demand
- Crash cooldown demand
- MPECI and LPECI Operation continuous
 - Heat exchangers, pumps
 - Limited mission time

Lecture 5 – Probability.ppt Rev. 5

Demand Systems

 $D_n = n^{th}$ demand

 $P(D_n) =$ probability of success on demand n

 $P(\bar{D}_{n})$ = probability of failure on demand n

 W_n = system works for each demand up to and including demand n.

$$\therefore P(W_{n-1}) = P(D_1 \ D_2 \ D_3 \ \dots \ D_{n-1})$$
(1)

$$P(\bar{D}_{n} W_{n-1}) = P(\bar{D}_{n}|W_{n-1}) P(W_{n-1})$$
(2)

So

$$P(D_1 D_2 D_3 ... D_{n-1} \ \bar{D}_n) = P(\bar{D}_n | W_{n-1}) P(W_{n-1})$$

= $P(\bar{D}_n | D_1 D_2 ... D_{n-1}) \cdot P(D_{n-1} | D_1 D_2 ... D_{n-2}) ... P(D_2 | D_1) P(D_1)$ (3)

If all demands are alike and independent, this reduces to:

$$P(D_1 D_2 ... D_{n-1} \overline{D}_n) = P(\overline{D}) [1 - P(\overline{D})]^{n-1}$$
(4)

Lecture 5 – Probability.ppt Rev. 5 vgs

20/10/2009 9:18 PM

f(t)dt = probability of failure in the interval dt at time t

$$F(t) = \text{accumulated failure probability}$$
(1)
= $\int_{0}^{t} f(t') dt'$

Assuming that the device eventually fails the reliability, R(t) is defined as

$$R(t) = 1 - F(t)$$

= $\int_{0}^{\infty} f(t')dt' - \int_{0}^{t} f(t')dt'$
= $\int_{0}^{\infty} f(t')dt'$ (1)

20/10/2009 9:18 PM

Conditional Failure Rate - 1

$$f(t) = -\frac{dR(t)}{dt} = \frac{dF(t)}{dt}$$
(1)

?(t) =failure rate at time t
 given successful operation up to time t

$$f(t)dt = ?(t) dt R(t)$$

or $f(t) = ?(t) R(t)$
$$= -\frac{dR}{dt}$$
(1)

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

Conditional Failure Rate – 2 $R(t) = \exp\left[-\int_{0}^{t} ?(t)dt\right]$ (1)

If 1 is constant (random failures)

$$R(t) = e^{-lt}$$

Lecture 5 – Probability.ppt Rev. 5

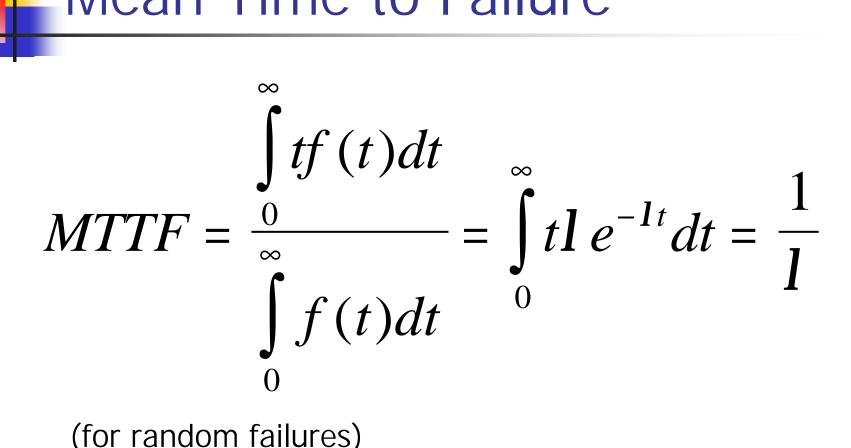
20/10/2009 9:18 PM

vgs

Summary of Terms

Word description	Symbol =	First relationship	= Second relationship	= Third relationship
Hazard rate	λ(1)	-(1/R) dR/dt	f(t)/(1-F(t))	f(t)/R(t)
Reliability	R(t)	$\int_t^\infty f(\tau) \ d\tau$	1 - F(t)	$\exp\left[-\int_0^t \lambda(\tau) \ d\tau\right]$
Cumulative failure probability	F(t)	$\int_0^t f(\tau) \ d\tau$	1 - R(t)	$1 - \exp\left[-\int_0^t \lambda(\tau) d\tau\right]$
Failure probability density	f(t)	dF(t)/dt	-dR(t)/dt	$\lambda(t)R(t)$

Figure 4-5 - A summary of equations relating ?(t), R(t), F(t), and f(t) Lecture 5 – Probability.ppt Rev. 5 20/10/2009 9:18 PM vgs



Mean Time to Failure

(for random failures)

Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

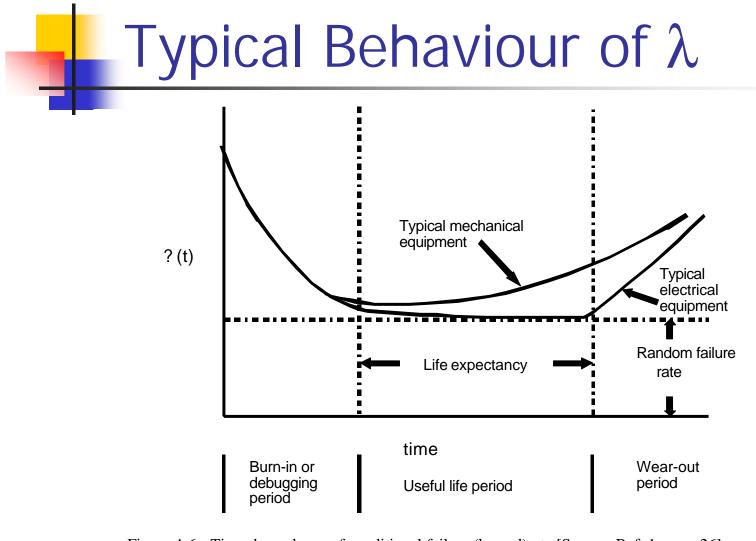


Figure 4-6 - Time dependence of conditional failure (hazard)rate [Source: Ref. 1, page 26]

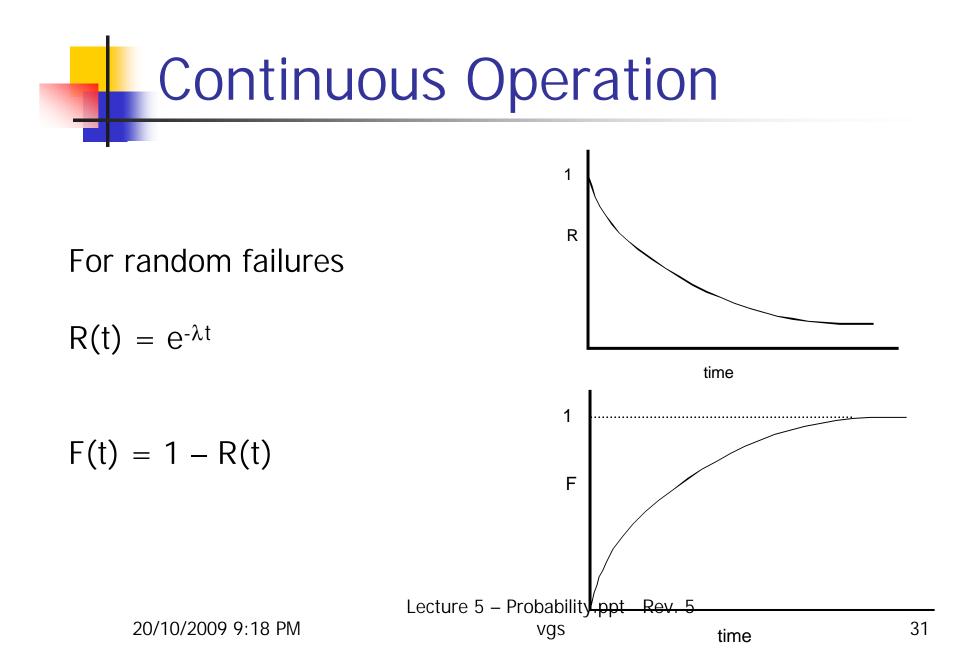
Lecture 5 – Probability.ppt Rev. 5

20/10/2009 9:18 PM

vgs

Availability = Reliability + effect of repair $R(t) \le A(t) \le 1$ With no repair, R(t) = A(t)

Lecture 5 – Probability.ppt Rev. 5

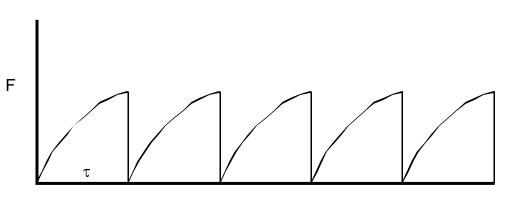


In any time interval 0 < t < τ

between repairs

 $\mathsf{F}(\mathsf{t}) = \lambda \mathsf{t}$

Average is $\langle F \rangle = \lambda \tau/2$



time

Example – One Shutoff Rod

Suppose $\lambda = 0.02$ / year Want Unavailability = $\overline{A} \equiv (1-A) \equiv F \le 10^{-3}$ (per demand) $\overline{A} = \lambda \tau/2$

So $\tau \leq 1$ year

Lecture 5 – Probability.ppt Rev. 5

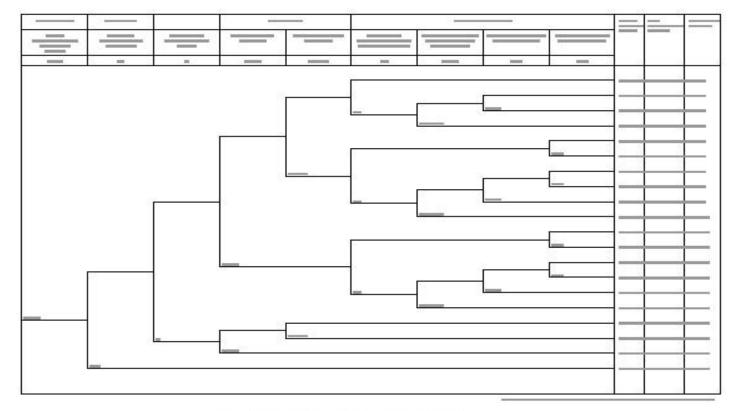
Meeting Reliability Targets

- Increase repair frequency τ until <F> meets the target
- Increase test frequency and fix if it fails on test

Lecture 5 – Probability.ppt Rev. 5

Event trees and Fault Trees

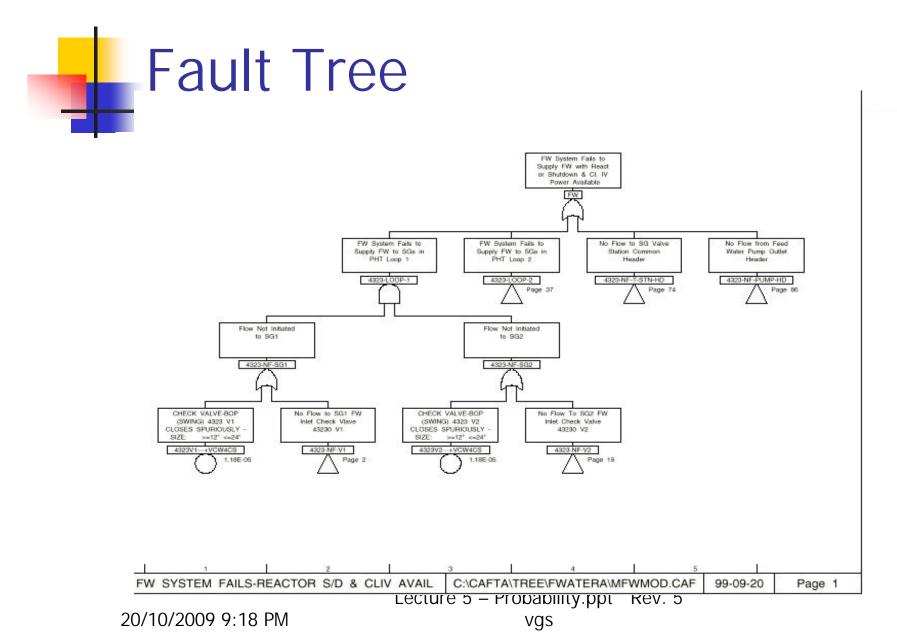
- Simplified treatment
- Fault tree frequency of an initiating event
 - Focus on how an event can occur
- Event tree frequency of core damage
 Focus on mitigating systems, given an
 - event

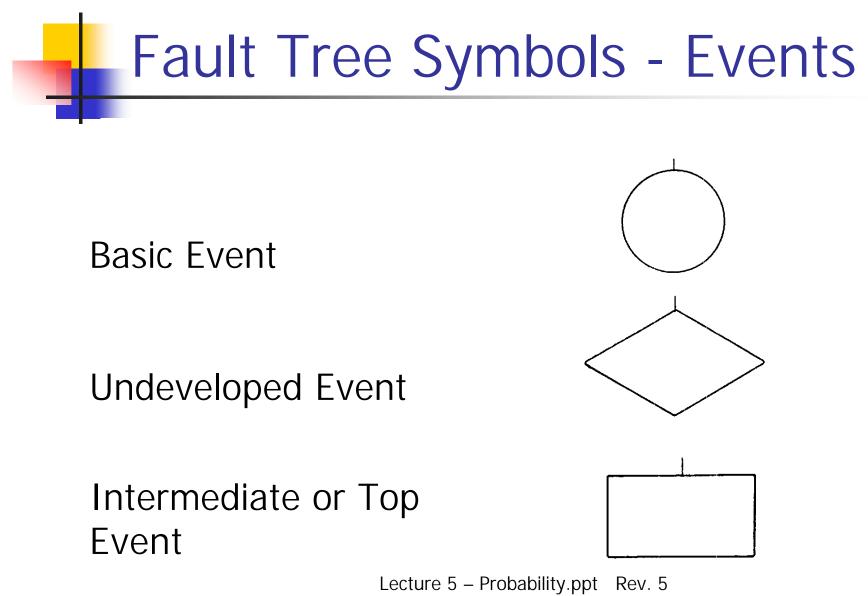


LARGE LOCA EVENT TREE FOR CANDU 6

20/10/2009 9:18 PM

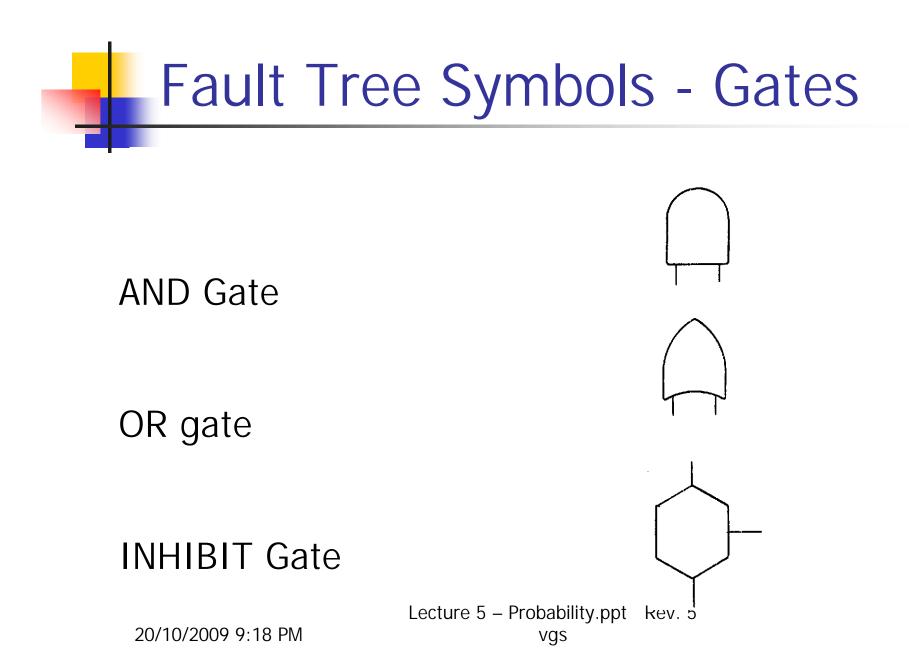
vgs





vgs

20/10/2009 9:18 PM



Steps in Creating a Fault Tree

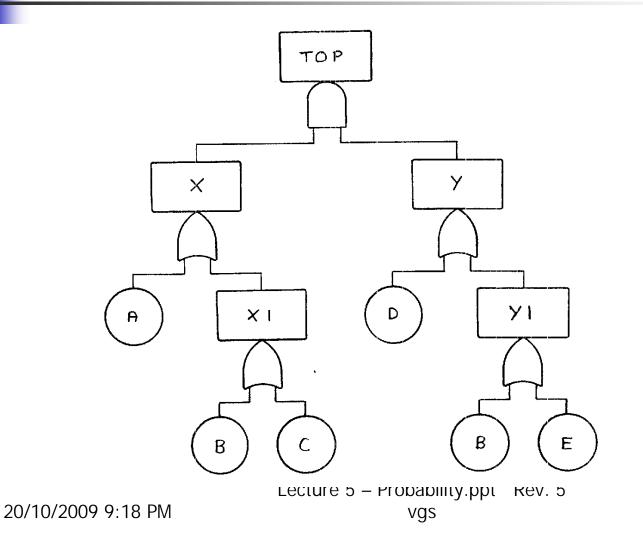
- Define top event
 - E.g. system failure
- Write down the *immediate* causes of the top event
 - If more than one, decide whether they are joined by AND or OR gates
- For each of these lower events, expand them similarly
- Continue until you can no longer break the event down, or you know the probability of failure

20/10/2009 9:18 PM

Lecture 5 – Probability.ppt Rev. 5

vgs

Example Fault Tree



Top
$$= X \cdot Y$$

$$X = A + X1$$

$$Y = D + Y1$$

$$X1 = B + C$$

$$Y1 = B + E$$

Therefore:

$$X = A + B + C$$

$$Y = D + B + E$$

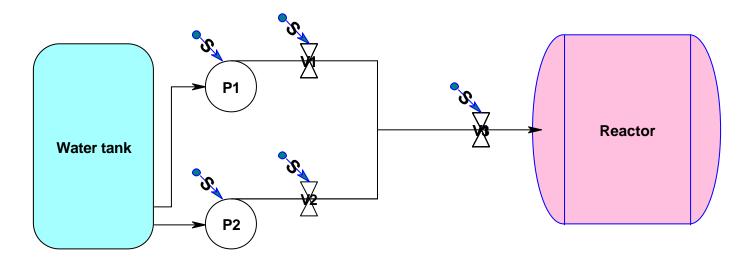
$$TOP = (A+B+C) \cdot (D+B+E)$$

= AD+AB+AE+BD+BB+BE+CD+CB+CE

$$=$$
 B+AD+CD+AE+CE

Lecture 5 – Probability.ppt Rev. 5

Develop a Fault Tree for This



Demand failure probabilities for each component:

Pump (P): 0.01 Valve (V): 0.01 Signal (S): 0.001

Lecture 5 – Probability.ppt Rev. 5

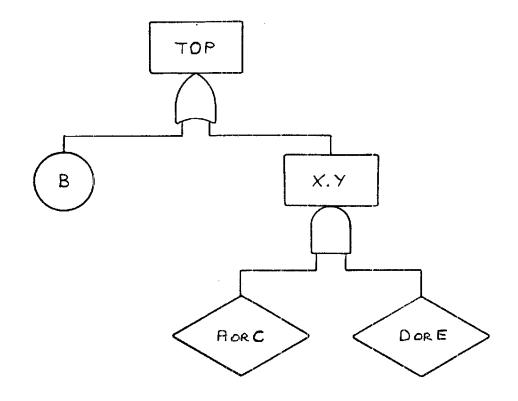
20/10/2009 9:18 PM

vgs

Minimal Cut Set

- Cut set = any basic event or combination of basic events that will cause the top event to occur
- Minimal cut set = the smallest combination of events which, if they all occur, will cause the top event to occur

Minimal Cut Set Gives Reduced Fault Tree



Lecture 5 – Probability.ppt Rev. 5 vgs

20/10/2009 9:18 PM

Event Tree Exercise

- A LOCA in a CANDU calls on the following safety functions to prevent a release of radioactivity to the environment:
 - Shutdown (either of two shutdown systems)
 - Emergency Core Cooling
 - Containment (box-up and cooling)
- If ECC fails, the moderator can prevent fuel melting
- If the demand unavailability of each of the four safety systems is 10⁻³ and of the moderator is 10⁻², draw the event tree and determine:
 - The frequency of severe core damage
 - The frequency of a large release

Lecture 5 – Probability.ppt Rev. 5