Lecture 12 - Technology of Accident Analysis – cont'd

Dr. V.G. Snell Nuclear Reactor Safety Course McMaster University

22/11/2009 9:37 PM

Lecture 12 - Technology of Accident Analysis contd R4 vgs

Heat Transport System

- Equations of mass, energy and momentum conservation for nonequilibrium transient two-phase flow in a network in one-dimension
 - Steam and water
 - Unequal temperature, pressure, flowrate
 - Parallel paths, components connected together

System Thermohydraulic Model

- Equations of state for the various phases
- Component models for steam generators, fuel channels, fuel, headers, secondary side, valves, pumps etc.
- Correlations for pressure-drop, heat transfer (including CHF)
- Efficient numerical solution schemes
- Plant controllers

Typical Link-Node Structure

- Break the circuit up into
 - nodes containing mass
 - links joining the nodes
- Mass & energy conservation equations for nodes
- Momentum equation for links

Conservation of Mass

$$\frac{dM_i}{dt} = \sum_k W_k$$

Conservation of Momentum

$$\frac{dW_k}{dt} = \frac{A_k}{L_k} \left[(P_i - P_j) - \left(\frac{f_k L_k}{D_k} + k_k\right) \frac{W_k^2}{2g_c r A_k^2} \right]$$

Lecture 12 - Technology of Accident Analysis contd R4 vgs

Conservation of Energy

$$\frac{dU_i}{dt} = \sum W_{in}e_{in} - \sum W_{out}e_{out} + Q_i$$

Equation of State

$$\boldsymbol{r} = f(\boldsymbol{P}, \boldsymbol{T})$$

FIG I-

HORIZONTAL & VERTICAL FLOW PATTERN SKETCHES

Flow

Flow

MIST, DISPERSED OR FOG FLOW

Fuel Channels (in accidents)

- Heat transfer
- Stress-strain behaviour
- Hydrogen chemistry

Heat Transfer

- Convection and conduction from coolant
- Conduction from fuel if in contact
- Radiation from fuel

$$E = es \left(T_f^4 - T_{PT}^4 \right)$$

Pressure Tube Strain (>600C)

- Strain to contact calandria tube at moderate pressure (>1MPa)
- Sag to contact calandria tube at low pressure (<1MPa)
- Strain to failure at high pressure (>6MPa)

Hydrogen – quadruple threat

- Oxygen embrittlement of sheaths & PT
- Heat increases fuel & PT temperatures
- Effect of noncondensables on ECC
- Collects in containment & can burn
 - >4% burn
 - >10% detonate (depends on steam fraction)

At high fuel temperatures:

$Zr + 2H_2O \Rightarrow ZrO_2 + 2H_2 + heat$

In the long term:

 $H_2O + radiation \longrightarrow H_2 + O$

 $O + O \longrightarrow O_{\gamma}$

Limits to hydrogen generation

- For $T_S \sim 1500$ C, auto-catalytic
 - For LWRs, no place for heat to go except to fuel nearby
 - Put limit on sheath temperature of 1200C
 - For CANDU, <3 inches from any fuel element to pressure tube
 - Put limit on amount of predicted oxidation

Moderator – Transient Local Temperature

- Solve 3D fluid flow with heat addition in a porous medium
- Mass, momentum & energy equations generalized to 3D
- Need experimental validation because of complex geometry

Moderator – Chemistry

- Formation and recombination of deuterium gas
- Changes in chemistry can cause rapid evolution of D₂

 $2D_2O + radiation \longleftrightarrow 2D_2 + O_2$

Can also cause Gd precipitation

Containment

- Same physics as heat transport system, but:
 - Containment volume compartmentalized
 - Flow within the larger compartments is 3D
- Fluids coexist: air, steam/water, & hydrogen
- Heat is added by
 - Steam and hot water
 - Radioactive decay of any fission products
 - Motors, lights
- Heat is removed by
 - Dousing (water sprays)
 - Condensation on walls & surfaces; conduction through wall (slow)
 - Containment air coolers
 - Mass transport (leakage / venting)

Containment Pressure

- Set by heat addition vs. removal and mass transport:
 - Vacuum building (in multi-unit plants)
 - Leakage from containment through cracks
 - Deliberate venting through filters or sand beds

Fission Product Source Term

Fission rate = P MW x
$$\frac{10^{6}\text{joule}}{\text{MW-sec}}$$
 x $\frac{\text{fissions}}{200\text{Mev}}$ x $\frac{\text{Mev}}{1.60 \times 10^{-13}\text{joule}}$ (1)
= 3.13 x 10¹⁶ P fissions/sec.

If yield of *i*th. fission product is **g** per fission:

rate of production =
$$3.13 \times 10^{16} \text{ P} ?_{i}$$
 atoms/sec. (1)

Activity in core is:

$$a_i = 3.13 \times 10^{16} P ?_i (1 - e^{-?_i^t}) disintegrations/sec.$$
 (1)

22/11/2009 9:37 PM

Source Term in Fuel

In Curies:

$$a_{i} = \frac{3.13 \times 10^{16} \text{ P }?_{i}}{3.7 \times 10^{10}} (1 - e^{-?_{i}t}) \text{ disintegrations/sec.}$$
(1)
= 8.46 x 10⁵ P ?_i(1 - e^{-?_{i}t}) Ci

If activity saturates:

$$a_i = 8.46 \times 10^5 P ?_i Ci$$
 (1)

This is the amount available for release from the fuel

22/11/2009 9:37 PM

FP Inventories 1000MWe PWR

Typical core inventory of selected volatile fission products in a 1000 MWe PWR at the end of a fuel cycle

Nuclide*	Half-life†	Fission yield‡	Curies (× 10ଁର୍ବି)
^{85m} Kr	4.4 h	0.0133	0.24
^{\$6} Kr	10.76 v	0.00285	0.0056
⁸⁷ Kr	76 m	0.0237	0.47
*Kr	2.79 h	0.0364	0.68
¹⁸³ Xe	5.27 d	0.0677	1.7
185Xe	9.2 h	0.0672	.34
¹³¹ I	8.04 d	0.0277	.85
¹³² I	2.28 h	0.0413	1.2
¹⁸³ I	20.8 h	0.0676	1.7
134 I	52.3 m	0.0718	1.9
¹³⁵ I	6.7 h	0.0639	1.5

*Superscript m refers to a nuclide in an isomeric state (see Section 2.8).

 $\dagger m = minutes, h = hours, d = days, y = years.$

Cumulative yields in atoms per fission; equal to yield of nuclide plus cumulative yield of precursor. From M. E. Mesk and B. F. Rider, "Compilation of Fission Product Yields," General Electric Company report NEDO-12154, 1972. From "Reactor Safety Study" WASH 1400, 1975.

Fission Product Transport

- Noble gases
 - Little interaction with water or surfaces
- Tritium oxide
 - Behaves like steam & water
- Iodine, caesium, strontium, etc.
 - Interact strongly with water (dissolve) and tend to plate out on surfaces;
- Actinides (plutonium)
 - released from the fuel only if core is destroyed.

Iodine-131

- Dose from:
 - Ingestion
 - Inhalation
 - External
- Control via high pH in containment water
 - Tri-sodium phosphate

FP Transport - Summary

FIGURE 1.1 - Fission Product Behaviour under Accident Conditions

Atmospheric Dispersion

- Assume release of nuclide
 - concentration C
 - leak rate V
 - height h
- Release rate Q :
 Q=CV

Gaussian Dispersion Model

Concentration **c** at distance *x* is:

$$? = \left(\frac{2}{p}\right)^{1/2} \frac{Q}{s_{z}\bar{u}} \frac{f}{?x} e^{-h^{2}/2s_{z}^{2}}$$
(1)

where ? is the sector-averaged long-term concentration in Bq/m³ a distance x metres from the source, and will be uniform through the sector
Q is the release rate in Bq/s from a source h metres in height
s z is the vertical diffusion coefficient in metres
? is the angle subtended by the sector [radians]
f is the fraction of time the wind blows into the sector
<u>u</u> is the mean wind velocity in m/s.

Given Q, χ , geometry of release etc., the dose at the point *x* is found from:

Dose = χ times (Dose conversion factor)

e.g., for Ar⁴¹, 1 Bq/m³ gives a dose of 2.3x10⁻¹⁰ Sv/hr