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Reactor Physics - Revisited

n Recall for a point reactor:
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CANDU is Not a Point Reactor

n Flux tilts from movement of adjusters, 
varying zones, fuelling, xenon

n Flux tilt in accidents from half-core void, 
insertion of shutoff rods from top

n 3-D diffusion + point kinetics
n Neutrons are like flow through medium
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Continuity Equation -
Production
Let n(r,t) be neutron density at point r and time 

t
n assume all at same speed

d
dt

n t dV production absorption leakage
V

( , )r = − −∫
Let s(r,t) be # of neutrons/vol/time 
emitted at point r and time t

production s t dV
V

= ∫ ( , )r
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Continuity Equation –
Absorption

Similarly
absorption t dVa

V

= ∫ Σ ( ) ( , )r rφ

φ(r,t) is flux
•Total rate at which neutrons pass through a 
given area, regardless of orientation

•Useful for describing neutron reaction rates

Σa(r) is the absorption cross 
section

Neutrons

Neutron Current
Density

Surface dA

J

n
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Continuity Equation – Leakage
Let J(r,t) =neutron current density vector
n measures the net flow of neutrons across a unit area 

in any given direction
Let n be a unit normal vector pointing outward from the 

surface A around V

leakage t dA
A

= •∫ J r n( , )
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Continuity Equation

d
dt

n t dV s t dV t dV t dVa
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Fick’s Law
n Current density 

vector ∝ negative 
gradient of the flux

n Proportionality 
constant is diffusion 
coefficient, D

J = − ∇D
r

φ

M

Distance

J

More neutrons per
cm3 to left of line

Fewer neutrons per
cm3 to right of line

So neutron current is from
left to right, proportional
to slope of flux
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Neutron Diffusion Equation

n For single energy

n Compare heat conduction
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n Pd(t) - power produced by 
all decaying fission products 
at time t

n ni(t) - number of atoms 
decaying per unit time of 
fission product i at time t

n Ei - average energy 
produced by the decay of 
each atom of fission 
product i

Decay Heat
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CANDU Bundle Power after Shutdown
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Fuel
n Key safety parameters

n Fuel temperature
n Drives fission product transport
n Drives pressure tube deformation
n Potential sheath failure
n Potential pressure-tube failure
n Limited effect on physics

n Fuel sheath integrity
n Fission product inventory & release
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Location of Fission Products
n Fission products 

formed within 
fuel grains

n Diffuse
n Bound inventory 

– in grains
n Grain boundary 

inventory
n Gap inventory

<10% >90%Fission 
products 
move this way 
with 
increasing 
temperature 
& burnup
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Behaviour With Irradiation
n Cracking
n Swelling
n Dishing/ridging
n Gas pressure increase
n Pellet-clad interaction

Un-irradiated
Fuel

Irradiated
Fuel (exaggerated)
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Fuel Heat Conduction

Q kA
dT
dx

= −One dimension

Three dimensions

(Rate of change of internal energy) =
(rate of energy release) - (rate of energy loss from conduction)

ρ
∂
∂

c
T
t

H k T= + ∇ 2
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Integrate (let                )

Cylindrical Fuel Pin
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Sheath and Gap

Apply same equation to sheath

∆ T T T
Ha a b a

kS Si So
S

= − =
+2

2
log[( ) / ]

And gap

q h T Tg F Si= −( )

And coolant

q h T TSo C= −( )
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Sheath-to-Coolant ∆T
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Steady State –

All heat produced in fuel is transferred to coolant, so for length l :
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Safety Importance

Heat Capacity
Melting Point
Thermal Conductivity
Characteristic

LowHigh
LowHigh
HighLow
Metal FuelUO2 Fuel
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Dryout
n Sudden drop in 

sheath-to-
coolant heat 
transfer when 
“Critical Heat 
Flux” is reached

n Temperature 
jump strongly 
dependent on 
subcooling

CHF
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Flow Regimes in Horizontal 
Heated Channel (High Flow)

Subcooled
Boiling

Saturated
Nucleate
Bioling

Forced
Convective
Evaporation

Film
Boiling

Forced
Convection
 toVapour

Flow
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Progressive Effects of 
Overpower
n Dryout
n Sheath temperature rise
n Zircaloy annealing
n Oxidation embrittlement of sheath
n Braze melting and attack on Zircaloy
n Zirconium-water reaction (exothermic)
n Bundle collapse
n Sheath melting
n Fuel melting (extremely unlikely)
n Pressure tube balloon or burst
n Heat transfer to moderator



11/28/2009 7:42 PM
Lecture 11 – Technology of 

Accident Analysis.ppt  Rev. 6   vgs 23

CHF in a CANDU Channel
n CHF determined 

experimentally
n no reliable theory for 

needed accuracy
n Local flux shape 

means dryout is not 
at the end

n How can we change 
the flux shape to 
improve margins?

Distance along channel
Inlet Outlet

Heat flux
(normal)

Heat flux
(overpower)

CHF

Quality

Dryout
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Gas Pressure

n Driving force for sheath strain in 
accidents

n Affects sheath liftoff
n Therefore fuel-to-sheath heat transfer
n Therefore fuel temperature

n Model via ideal gas law
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n Relevant to large LOCA
n Transverse stress:

n P is the pressure differential across the tube
n r is the tube radius
n w is the tube thickness

Strain

σ =
Pr
w
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Strain Rate Equations

& / /ε
ε

σ σ= = +− −d
dt

A e B en k T m Tl

All parameters determined from experiment

Sheath may fail by ballooning if ε > 5%

What is fission product release?
• fraction of gap inventory
• small % of grain-boundary & bound inventory

- at high temperatures only
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Fission Product Release
MCE2-T03 (Fragment in Argon)
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Measured Temperature
HCE2-BM5 (Mini Element exposed to Steam)
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Release is a strong 
function of temperature, 
atmosphere


