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Summary: 

The multigroup from of the neutron diffusion equation is developed and explored with the aim to 
relate the mathematics to the physical meaning.   
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Figure 1 Course Map. 

1.2 Learning Outcomes 
 
The goal of this chapter is for the student to understand: 

• The physical meaning of the multigroup equations 
• The mathematical expressions that form the multigroup equations 
• How to simplify the general forms 
• How to model a reactor using the multigroup form 
• How to solve the equations. 
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2 Why We Need the Multigroup Model 
 
Neutrons have a wide energy spectrum, ranging from a fraction of an eV to a few MeV.  The 
cross sections vary over decades in this range so we can hardly expect the one group 
approximation to be very accurate.  To illustrate this, consider a simple cell model as shown in 
figure 2 for a tank type experimental reactor: 

 
Figure 2 Schematic of the nuclear reactor model showing the top view of the lattice 

structure of fuel bundles and a side view of the two-region cell. 

The height, H, of the D2O moderator was varied to achieve criticality.  Then a void was 
introduced in the coolant by bubbling air into it.  The height, H, of the moderator was again 
varied to keep the reactor critical.  A range of void fraction was introduced.  Figure 3 gives the 

experimental results (Buckling, (  vs. void fraction, α) and the predictions of a number of 

simple reactor models.  One group theory does not come close to predicting the buckling, even if 
the cross sections are varied within their experimental error.  The semi-two-group theory does 
better and the two-group model does better still. 

)2

H
π
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Figure 3 Comparison between experimentally observed and calculated buckling. 

The two-group model can be further improved by using energy-averaged cross sections obtained 
by a comprehensive cell code that employs a detailed energy structure.  The improved 
comparison is shown in figure 4 shows what can be achieved with a few-group model (in this 
case, two) if the ‘appropriate’ average cross sections can be found that represent the cell in 
question.  We shall see that we can only get good values if we first perform a many-group model 
calculation.    

 
Figure 4 Comparison of experimentally observed buckling and predictions of the two-
group model using adjusted parameters. 
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This work is detailed in [GARLAND1975] but for the present discussion, the main point to note 
is the inadequacy of the one-group model or even the two-group model since the appropriate 
cross sections are not explicitly available and since these low order models do not come close to 
capturing the energy structure.  Accurate cell calculations are done typically with up to 150 
neutron energy groups to obtain cell-averaged cross sections.  Then, few-group approximations 
are used for the full core calculation based on the cell averaged cross sections.  Few-group 
calculations can be successfully done but only if they are backed up by detailed multigroup cell 
calculations. 
 
This chapter is all about the governing equations for the multigroup model that are the essence of 
all these calculations. 
 

3 The Multigroup Equations 
 
To form the multigroup neutron diffusion equations we first divide the energy range for the 
neutrons up into groups as shown in figure 5. 

Neutron Energy

EG EG-1 Eg Eg-1 E2 E1 E0... ...

a few MeVfraction of
an ev

group g group 1group G

 
Figure 5 Neutron energy group numbering scheme.  

Thus we have: 
 ( ) ( )g g, g 1 gr, t  for E E E  where E E Eg 1− −φ ∈ < <  (3.1) 
The multigroup form of the neutron diffusion equation is: 

 

( ) ( ) ( ) ( ) ( )
G

g g g a g g sg g sg 'g g '
g g ' 1leakage loss by removal by

absorption scattering scattering into group g

g

fraction
appearing
in gr

1  r, t  =   D  (r) r, t (r) r, t (r) r, t (r) r, t
v t =

∂
φ ∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ

∂

+ χ

∑����	���
 ���	��
 ���	��

����	���


N ( ) N
G

ext
g ' f g ' g ' g

g ' 1
external sourcetotal fission

oup g production

( ) r, t S
=
ν ∑ φ +∑ r

�����	����


(3.2) 

Note that the neutrons are born with no knowledge of their parents.  Thus we write the total 
fission production as a sum that is independent of the index g.  From there, we split out the 
fraction, , that appear in group g. gχ
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Recall that the cross sections and flux can vary greatly as a function of neutron energy, E.  
Figure 6 shows an illustrative 5 group approximation.  So we will have to use some average flux 
and cross section that have been averaged over the property in the group energy range in 
question.   

Energy, E

φ

12345

∑

 
Figure 6 Illustrative flux and cross section variation with energy. 

We’ll see how to do this soon but for now, we want to concentrate on each of the terms in 
equation 3.2 to make sure you understand what each term represents in a physical sense. 
 
The fission terms are: 

 ( )
G

g ' f g ' g ' 5 f 5 5 4 f 4 4 3 f 3 3 2 f 2 2 1 f 1 1
g ' 1 thermal fissions (about 97%) fast fissions (about 3%)

total fission
production

( ) r, t
=
ν ∑ φ = ν ∑ φ + ν ∑ φ + ν ∑ φ + ν ∑ φ + ν ∑ φ∑ r

�����	����
 �������	������

�����	����


 (3.3) 

These fission neutrons, arising mostly from the fissions that are induced by thermal neutrons, 
have energies in the MeV range, for the most part.  Figure 7, illustrates this. 

Energy, E

χ

12345

 
Figure 7 Fission neutron energy spectrum. 
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So, for the illustrated 5 group example, 5 4 0χ = χ = , and the other χ ’s are non-zero.  So, for the 
thermal groups (ie groups 5 and 4), there are no fission source neutrons.  The summation term 
contains contributions from all 5 fission terms but the biggest contributors are from the thermal 
group.  This sum of fission neutrons will only show up as sources for groups 1, 2 and 3. 
 
Now would be a good time to look back at the governing equations and write them out for 
the 5 group case.  It is important that you get it right. 
 
Now, let’s look at the scattering terms.  These are new.  They add complexity but, taken step by 
step, they are not that hard to understand.  In previous chapters, which assumed mono-energetic 
neutrons, we did not have to consider the loss and gain of neutrons by the scattering process 
because when a scattering event occurs, the neutron is simply deflected.  It is not absorbed, 
hence it there is no gain or loss of neutrons in total because of scattering. But, now that we have 
subdivided the neutrons up into groups, the scattered neutrons emerge from the scattering 
process at some energy different, in all likelihood, from the incident energy.   
 
The scattering removal term in equation 3.2 is straightforward.  It says that all the neutrons in 
group g scatter to some other energy and, so, disappear from the gth neutron balance equation.  
Some of the scattered neutrons will emerge with a new energy that is within the range of the 
energies represented by group g.  So we have to add those back in.  We’ll do that via the 
scattering ‘in term’, discussed next. 
 
The ‘scattering in’ term is 

 ( )
G

sg 'g g ' s1g 1 s2g 2 s3g 3 s4g 4 s5g 5
g ' 1

(r) r, t
=
Σ φ = Σ φ +Σ φ +Σ φ +Σ φ +Σ φ∑  (3.4) 

that is, neutrons are scattered into group g from all the 5 groups.  Note that we have a term 
representing scattering from group g to group g, ie the ones that stay in the group even after 
scatter.  This effectively adds back in the neutrons that were erroneously subtracted by the 
scattering removal term of the previous paragraph.  Figure 8 illustrates the process. 

Energy, E

12345

3 3→∑4 3→∑

2 3→∑

5 3→∑

1 3→∑

 
Figure 8 Scattering into group 3. 
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Of course, the total scattering out of group 3 is just the sum total of all the scattering out 
processes, ie: 

 (
G

s3 3 s31 3 s32 3 s33 3 s34 3 s35 3 s3g ' 3
g ' 1

(r) r, t
=

 
 Σ φ = Σ φ + Σ φ +Σ φ + Σ φ + Σ φ = Σ φ
 
 
∑ )  (3.5) 

or for the general group g: 

 (
G

sg g sg1 g sg2 g sg3 g sg4 g sg5 g sgg ' g
g ' 1

(r) r, t
=

 
 Σ φ = Σ φ + Σ φ + Σ φ + Σ φ + Σ φ = Σ φ
 
 
∑ )  (3.6) 

This is illustrated in figure 9. 
 

Energy, E

12345

3 3→∑3 4→∑

3 2→∑
3 5→∑

3 1→∑

 
Figure 9 Scattering out of group 3. 

So we can plug equations 3.4 and 3.6 into 3.2 using group 3 as an example to get: 

 

( ) ( ) ( )3 3 3 a 3 3
3 leakage loss by

absorption

s31 3 s32 3 s33 3

1  r, t  =   D  (r) r, t (r) r, t
v t

∂
φ ∇ ⋅ ∇φ −Σ φ

∂

− Σ φ + Σ φ + Σ φ

����	���
 ���	��


( )s34 3 s35 3

scattering out

s13 1 s23 2 s33 3

+ Σ φ + Σ φ

+ Σ φ + Σ φ + Σ φ

����������	���������


( )

N ( ) N

s43 4 s53 5

scattering in

G
ext

3 g ' f g ' g ' 3
g ' 1fraction

appearing external sourcetotal fissionin group g production

( ) r, t S
=

+ Σ φ + Σ φ

+ χ ν ∑ φ +∑ r

����������	���������


�����	����


 (3.7) 

Notice how the ‘in group’ scattering terms cancel. 
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Just to confuse matters a bit more, the removal cross section is often used.  It is defined as, for 
group 3: 

  (3.8) 
G

r3 a 3 s3 s33 a 3 s31 s32 s34 s35 a 3 s3g '
g ' 1
g ' 3

(r)
=
≠

Σ ≡ Σ +Σ −Σ = Σ +Σ +Σ +Σ +Σ = Σ + Σ∑

ie, it is the net removal of neutrons from group 3 by scattering and absorption.  If we use this 
definition, the governing equation becomes: 

 

( ) ( ) ( ) ( ) ( )

N

G

g g g r g g sgg g sg 'g g '
g g ' 1leakage removal in group

scattering scattering into group g

g g ' f g

fraction
appearing
in group g

1  r, t  =   D  (r) r, t (r) r, t (r) r, t (r) r, t
v t =

−

∂
φ ∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ

∂

+ χ ν ∑

∑����	���
 ���	��
 ���	��

����	���


( ) N
G

ext
' g ' g

g ' 1
external sourcetotal fission

production

( ) r, t S
=

φ +∑ r
�����	����


(3.9) 

or, more simply, 

 

( ) ( ) ( ) ( )

N ( )

G

g g g r g g sg 'g
g g ' 1leakage removal g ' g

net scattering into group g

G

g g ' f g ' g '
g ' 1fraction

appearing total fission
in group g p

1  r, t  =   D  (r) r, t (r) r, t (r) r, t
v t

( ) r, t

=
≠

=

∂
φ ∇⋅ ∇φ −Σ φ + Σ φ

∂

+ χ ν ∑ φ

∑

∑ r

����	���
 ���	��
 g '

����	���


N
ext
g

external source
roduction

S+
�����	����


 (3.10) 

Personally, I find the use of the removal form to be un-necessarily confusing.  I prefer to jut 
remember equation 3.2.  Everything else discussed above flows readily from that equation.  
There is no need to memorize any of this.  If you take the time to visualize the processes that are 
occurring, then you should be able to state equation 3.2 as you go through the accounting of the 
sinks and sources of neutrons.  Try it!  Don’t be afraid to spend some time making sure that 
you have it clear in your mind.  It is a milestone concept in reactor physics and the subject 
won’t make sense unless you grasp it. 
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4 Generating the Coefficients 
 
The raw cross section data is available in libraries like ENDF/B in the public domain.  This data 
gives the experimental values as a function of energy in far too much detail for our multigroup 
model.  We need to come up with good estimates of the group-averaged cross sections.  To do 
that we step back and use the more general form of the neutron diffusion equation, one that has 
energy represented as a continuum, rather than as discrete bins: 

 

( ) ( )

( )N ( ) ( ) ( )

a s s
0leakage loss by removal by

absorption scattering scattering into E E+dE range

f
0fraction

appearing
E E+dE 
range

1   =   D (r) (r) (r) E ' E r, E ', t dE '
v t

E E ' E ' r, E ', t

∞

→

∞

→

∂φ
∇ ⋅ ∇φ− Σ φ − Σ φ + Σ → φ

∂

+ χ ν ∑ φ

∫

∫

��	�
 �	
 �	

������	�����


N

( )

ext

external sourcetotal fission
production

S

Note : r, E, t

+

φ = φ

�����	����

 (4.1) 

The term  is the cross section for neutrons at energy E’ scattering to energy E.  

Note that  has units of cm
( )s E ' E dE 'Σ →

( )s E ' E dE 'Σ → -1 so ( )s E ' EΣ →  as units of cm-1 ev-1. 
 
We define the group flux as: 

 ( ) ( )
g 1

g

E

g
E

r, t r, E, t dE
−

φ ≡ φ∫  (4.2) 

This prompts us to perform the same integral for each term of equation 4.1 and to equate what 
we get to equation 3.2 to generate a rigorous definition of the group-averaged cross sections.  
Thus equation 4.1 becomes, term by term: 

 

( ) ( )

( ) ( )

( )

g 1

g

g 1

g

g 1

g

E
g g

g gE

E

E
E

g

E

1 1  r,E, t dE
t v E t v v

1 r,E, t dE
v E1where 

v
r, E, t dE

−

−

−

   

t
φ ∂φ∂ ∂ φ ≡ =   ∂ ∂   

φ

≡

φ

∫

∫

∫

∂

 (4.3) 

Notice how the coefficient, 1/vg, is determined simply as the flux weighted integral over the 
group energy range.  As we go through the integral term by term, we will see the same pattern. 
 
Now for the diffusion coefficient: 
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( ) ( )

( ) ( )

( )

g 1

g

g 1

g

g 1

g

E

g g
E

E

E
g E

E

  D E r,E, t dE D

D E r,E, t dE

ie. D

r,E, t dE

−

−

−

 
 ∇ ∇φ ≡ ∇
 
 

∇φ

≡

∇φ

∫

∫

∫

i i ∇φ

 (4.4) 

This time, the weighting is ∇φ  since that is how the flux factor appears in the term. 
 
The absorption term is just: 

 

( ) ( )

( ) ( )

( )

g 1

g

g 1

g

g 1

g

E

a a
E

E

a
E

a g E

E

  E r,E, t dE

E r,E, t d

ie. 

r,E, t dE

−

−

−

g g

E

∑ φ ≡ ∑

∑ φ

∑ ≡

φ

∫

∫

∫

φ

 (4.5) 

The scattering removal term is similar. 
 
The scattering down term is a bit messier: 

 

( ) ( ) ( ) ( )

( ) ( )

g 1 g 1 g ' 1

g g g '

g 1 g ' 1

g g '

E E EG

s s
g ' 1E 0 E E

E EG

s
g ' 1 E E

G

sg 'g g '
g ' 1

  E' E r,E ', t dE ' dE  E' E r,E ', t dE ' dE

E' E r,E ', t dE ' dE

− − −

− −

∞

=

=

=

  
  ∑ → φ  = ∑ → φ

      
 
 = ∑ → φ
 
 

≡ ∑ φ

∑∫ ∫ ∫ ∫

∑ ∫ ∫

∑

 (4.6) 

So we have: 

 ( ) ( )
g 1 g ' 1

g g '

E E

sg 'g s
g ' E E

1 E' E r, E ', t dE ' dE
− − 
∑ = ∑ → φ
φ
 

∫ ∫ 


 (4.7) 

The fission term is: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

g 1 g 1

g g

g 1

g

g 1

g

E E

f f
E 0 E 0

E

g f g
0 E

EG

g f
g ' 1 E

G

g g ' f g' g '
g ' 1

(E) E' E' r, E ', t dE 'dE (E)dE E' E' r, E ', t dE '

E' E' r, E ', t dE ' where E dE

E' E' r, E ', t dE '

− −

−

−

∞ ∞

∞

=

=

χ ν ∑ φ = χ ν ∑ φ =

= χ ν ∑ φ χ ≡ χ

= χ ν ∑ φ

≡ χ ν ∑ φ

∫ ∫ ∫ ∫

∫ ∫

∑ ∫

∑

(4.8) 

Dropping the summation, we finally arrive at: 

 

( ) ( ) ( )

( )

g 1

g

g 1

g

E

g ' f g' f
g ' E

E

g
E

1 E' E' r,E ', t dE '

E dE

−

−

ν ∑ ≡ ν ∑ φ
φ

χ = χ

∫

∫
 (4.9) 

The accuracy of the multigroup model depends very much on the group constants chosen. 
 
Note that the constants depend on φ which depends on the constants.  This is a circular argument. 
 To compensate, the typical practice is to follow a scheme as outlined in figure 10. 

cross
sections,

etc as fn(E)

Flux =
Maxwellian,
1/E, fission
spectrum

Coarse
grid / cell

Calculate
flux (E, r)

Calculate
group

constants

fine
grid / cell

Calculate
flux g

fine group
structure,

coarse spatial
grid

coarse group
structure, fine

spatial grid

possible iteration

 
Figure 10 Typical calculation scheme. 
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A fine energy structure (many groups, perhaps of the order of 100 or more) is assumed by taking 
the flux as Maxwellian in the thermal range, 1/E in the mid-range and a fission spectrum for the 
high end.  A coarse spatial grid is assumed or a small representative region is chosen (usually a 
representative cell).  The multigroup equations can then be solved numerically (high G, small 
number of spatial mesh points).  This yields φg for the cell, g =1, 100 (say).  This flus can be 
used to calculate weighted cross sections and other constants for a coarse energy structure, 
perhaps G=5 or so.  Now, with a manageable number of neutron equations per spatial mesh 
point, the whole core (or a typical cell) can be numerically solved with a large number of spatial 
mesh points, giving good spatial detail, albeit with a coarse energy resolution.  Once these 
calculations are done, there is the possibility that a re-weighting of the group constants might 
have to be done to account for flux dependent effects like Xe, burnup, temperature, control rod 
position, etc.  So, iteration might be required. 
 
We could use the same basic equation (ie equation 3.2) for both the fine energy calculation and 
the fine spatial mesh calculation.  The more typical route, however, is to not use diffusion based 
calculation for the fine energy mesh / cell calculation because diffusion theory is not accurate 
near interfaces that involve large changes in cross sections (like water / control rod interfaces, 
for instance). Rather, a transport-based code such as WIMS is used.  The fine spatial mesh / core 
calculations typically do use the diffusion approximation propped up by the group-averaged 
coefficients based on transport calculations.  Herein, we will assume that the proper flux 
weighted coefficients have been found and we explore some simplifications and criticality 
calculations. 
 

5 Simplifications 
 
Most neutrons lose energy when they scatter.  Only the low energy thermal neutrons experience 
any significant upscatter (that’s what the Maxwellian is all about, after all).  So it is a reasonable 
approximation to assume that all groups do not upscatter if the thermal breakpoint is kept above 
~1 eV.  That will keep the thermal upscatter restricted to itself.  Thus: 
  (5.1) sg 'g 0 for g'>g   ∑ ≈ no upscatter assumption
This simplifies the group in-scattering term: 

 ( ) ( ) (
g 1G

sg 'g g ' sg 'g g ' sgg g
g ' 1 g ' 1 can lump this into 

the removal termscattering into group g

(r) r, t (r) r, t (r) r, t
−

= =
Σ φ → Σ φ +Σ φ∑ ∑ )���	��


����	���

 (5.2) 

We can also sometimes assume that scattering down is to the next lowest group only, ie no 
groups are skipped when scattering down.  Thus: 

 ( ) ( ) (
G

sg 'g g ' sg 1g g 1 sgg g
g ' 1

scattering into group g

(r) r, t (r) r, t (r) r, t− −
=
Σ φ → Σ φ +Σ φ∑

����	���

)  (5.3) 

This is called  “directly coupled”. 
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Recall that in a scattering event: 

 
2

f i
A 1E E ,
A 1
−= α α ≡  + 


  (5.4) 

Therefore, if we maintain a group separation such that 

 g

g 1

E
E −

≤ α  (5.5) 

then the scattered neutron cannot have a final energy that is below the next group down.  For 
hydrogen, which has A=1, there is a problem because α=0.  But it can be shown that, even then, 
the error is < 1% if Eg/Eg-1 < 1/150.  
 

6 Criticality 
 
The criticality calculation follows the same itinerary as the one speed neutron case except that 
we now have to sweep through the energy groups as well as through space.  The basic steady 
state equation to solve is (assuming no up-scatter): 

 ( ) ( ) ( ) (
G G

g g r g g sg 'g g ' g g ' f g ' g '
g ' 1 g ' 1,g gremoval

1D  (r) r, t (r) r, t (r) r, t ( ) r, t
k= = ≠

−∇ ⋅ ∇φ +Σ φ − Σ φ = χ ν ∑ φ∑ ∑ r
���	��
 ) (6.1) 

Note that .  We can write this in a matrix form: rg t g sgg a g sg sgg∑ = ∑ −∑ = ∑ +∑ −∑

 1M
k

Fφ = φ  (6.2) 

where 

 

1 r1

S12 2 r2

S13 3 r3

D 0 0
D 0

M
D

−∇ ∇+∑ 
 −∑ −∇ ∇+∑ =
 −∑ −∇ ∇+∑
 
 

i "
i

i
# # #

 (6.3) 

 

1

2

3

φ 
 φ φ =
 φ
 
 #

 (6.4) 

 

1 1 f 1 1 2 f 2 1 3 f 3

2 1 f 1 2 2 f 2 2 3 f 3

3 1 f 1 3 2 f 2 3 3 f 3

F

χ ν ∑ χ ν ∑ χ ν ∑ 
 χ ν ∑ χ ν ∑ χ ν ∑=
χ ν ∑ χ ν ∑ χ ν ∑
  
 

"

# # #




 (6.5) 

Please note that the span is over the groups, not space.  Imbedded in the diffusion term is the 
space mesh.  Two dimensional paper cannot do justice to the complexity of the structure in 
matrix form.  With the assumption of no up-scatter, the M matrix is lower triangular.  If we 
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further assume that the neutrons are directly coupled, M would be 2-striped, ie: 

  (6.6) 

no up scatter directly coupled

x x
x x x x

M
x x x x x
x x x x x x

−

   
   
  = =
  
   
   ���	��
 ���	��





Solution, numerically, proceeds are for the one speed case.  The right hand side (RHS) of 
equation 6.2 is evaluated from a guess at the flux in space and energy.  The RHS is the source 
term.  The flux is found using Gauss-Seidel or SOR to complete the inner iteration for the first 
iteration.  Typically, the spatial grip is swept sequentially, starting with the equation for group 1, 
then 2, …G since the faster neutrons are essentially the source terms for the slower neutrons, but 
I suspect that it really doesn’t matter what order the equations are swept.  
 
Next, the source terms and k are updated and the iteration is repeated until both k and the flux 
have converged.  It is a straightforward procedure; just be careful to properly account for all the 
scattering terms. 
 

7 Group Collapsing 
 
Herein we will collapse the multigroup equations to 1 group just to show that the two forms are 
consistent with each other.  Then we will look at the 2 group approximation because it is 
commonly used and it is illustrative without being overly complex. 
 

7.1 Multigroup → One-Group 
 
We have the general multigroup equation: 

 
G G

ext
g g g a g g sg g sg 'g g ' g g ' f g ' g ' g

g g ' 1 g ' 1

1   =   D S
v t = =

∂
φ ∇ ⋅ ∇φ −Σ φ −Σ φ + Σ φ + χ ν ∑ φ +

∂ ∑ ∑  (7.1) 

And we had the definitions of the coefficients: 

 ( ) ( ) ( ) ( )
g 1E

g
E 0g

r, t r,E, t dE r, t r,E, t dE
− ∞

φ ≡ φ ⇒ φ ≡ φ∫ ∫  (7.2) 

 

 
( ) ( )

( )

( ) ( )

( )

g 1

g

g 1

g

E

E 0
E

g

0E

1 1r,E, t dE r,E, t dEv E v E1 1 for one group
v v

r,E, t dEr,E, t dE

−

−

∞

∞

φ φ

≡ ⇒ ≡

φφ

∫ ∫

∫∫
 (7.3) 
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( ) ( )

( )

( ) ( )

( )

g 1

g

g 1

g

E

E 0
g E

0E

D E r,E, t dE D E r,E, t dE
ie. D D

r,E, t dEr,E, t dE

−

−

∞

∞

∇φ ∇φ

≡ ⇒ ≡

∇φ∇φ

∫ ∫

∫∫
 (7.4) 

 

( ) ( )

( )

( ) ( )

( )

g 1

g

g 1

g

E

a a
E 0

a g aE

0E

E r,E, t dE E r,E, t d

r,E, t dEr,E, t dE

−

−

∞

∞

∑ φ ∑ φ

∑ ≡ ⇒ ∑ ≡

φφ

∫ ∫

∫∫

E
 (7.5) 

The scattering terms are: 

 ( )
G

sg g sg 'g g ' s g s
g ' 1

(r) r, t 0 when G=1
=

−∑ φ + Σ φ → −∑ φ +Σ φ =∑  (7.6) 

The fission term is: 

  (7.7) 

( ) ( )
g 1

g

E

g
E 0

G

g ' f g' g ' f
g ' 1

E dE E dE 1,
− ∞

=

χ ≡ χ ⇒ χ ≡ χ =

ν ∑ φ ⇒ ν∑ φ

∫ ∫

∑
Putting all these terms together, we get back the one-group equation: 

 ( ) ( ) ( ) (f
1 r, t D(r) r, t (r) r, t  r, tav t
∂
φ = ∇ ∇φ −Σ φ + ν∑ φ

∂
i )  (7.8) 
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7.2 Multigroup → Two-Group 
 
The two-group approximation is a common and illustrative one.  We divide the neutrons into a 
thermal group and a fast group with the division at 1 eV, as shown in figure 11.   

Energy, E

φ

12
thermal

fast

1 eV10-4 eV 2 MeV

χ

 
Figure 11 Two-group approximation. 

Note that  

  (7.9) 
1eV

2
0

(E)dE 0 and 1χ = χ = χ =∫ 1

Thus the general fission source term 

 
N (

G

g g g ' f g ' g '
g ' 1fraction

appearing total fission
in group g production

S
=

= χ ν ∑ φ∑ r )( ) r, t
�����	����


 (7.10) 

for the simple two-group case is: 

 1 1 f 1 1 2 f 2

2

S

S 0
2= ν ∑ φ + ν ∑ φ

=
 (7.11) 

There is no up-scattering so: 
  (7.12) s21 s2 s21 s22 s2 s220∑ = ⇒ ∑ = ∑ +∑ ⇒ ∑ = ∑
Therefore 
 r 2 t 2 s22 a 2∑ = ∑ −∑ = ∑  (7.13) 
Thus the two-group equations are: 
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1
1 1 r1 1 1 f 1 1 2 f 2 2

1

2
2 2 a 2 2 s12 1

2

1   =   D   no up-scatter
v t
1   =   D   no direct fission source
v t

∂φ
∇ ⋅ ∇φ −Σ φ + ν ∑ φ + ν ∑ φ

∂
∂φ

∇⋅ ∇φ −Σ φ +∑ φ
∂

 (7.14) 

In steady state, adding the k fudge factor we have: 

 1 1 r1 1 1 f 1 1 2 f 2 2

2 2 a 2 2 s12 1

1D  =     no up-scatter
k

D  =     no direct fission source

 −∇ ⋅ ∇φ +Σ φ ν ∑ φ + ν ∑ φ 

−∇⋅ ∇φ + Σ φ ∑ φ
 (7.15) 

Notice how the fast flux is the source term for the thermal neutrons (by scattering down in 
energy), while the thermal flux is the source for the fast neutrons by the fission event.  This is 
illustrated in figure 12. 

thermal neutrons

thermal neutron
absorbed

causing

giving

birth of fast neutron

fast neutrons slow down

φ

 
Figure 12 Thermal - fast exchange. 

So, it follows that you would expect to see an abundance, or peak of fast neutrons in the fuel 
region (because that is where the fissions take place).  They diffuse to the moderator where there 
is a high probability of slowing down (because of the materials used there for just that purpose).  
Hence you would expect to see a peak of thermal neutrons in the moderator.  This is illustrated 
in figure 13. 

0 a/2-a/2 x

φ Reactor

Core
ReflectorReflector

bb a/2

Fast flux

Thermal
flux

 
Figure 13 Spatial distribution of flux. 
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Thus the fast and thermal neutrons not only have a vastly different energy distribution, they have 
different spatial distributions in general. 
 

7.3 Two-Group Criticality 
 
We consider the case of a bare (ie, un-reflected) reactor so that we can develop the criticality 
condition for the two-group case and compare it to the one-speed case developed earlier.  
Because the moderator and fuel are mixed together, the thermalization and fission processes are 
not physically separated.  We can expect that both the fast and the thermal fluxes will have the 
same fundamental cosine shape for a simple slab reactor.  The basic equations are: 

 1 1 r1 1 1 f 1 1 2 f 2 2

2 2 a 2 2 s12 1

1D  =   
k

D  =   

 −∇ ⋅ ∇φ + Σ φ ν ∑ φ + ν ∑ φ 

−∇⋅ ∇φ +Σ φ ∑ φ
 (7.16) 

We write the flux as a product of an amplitude factor and a shape factor: 
 ( ) ( ) ( ) ( )1 1 2 2r r , rφ = ϕ ψ φ = ϕ ψ r  (7.17) 
Defining the buckling as usual: 
 ( ) ( )2 2r B r 0∇ ψ + ψ =  (7.18) 
we find that equation 7.17 becomes: 

 
2

1 1 r1 1 1 f 1 1 2 f 2 2

2
2 2 a 2 2 s12 1

1D B  =   
k

D B  =   

 + ϕ +Σ ϕ ν ∑ ϕ + ν ∑ ϕ 

+ ϕ +Σ ϕ ∑ ϕ
 (7.19) 

or in matrix form: 

 

( )

1 f 1 2 f 22 11 r1

2
2s12 2 a 2

D B
k k =  0 

D B

 ν ∑ ν ∑   ϕ + Σ − −          ϕ−∑ +Σ    

  (7.20) 

 
ie: 
 A 0ϕ =  (7.21) 
which has a non-trivial solution for the flux amplitudes only if: 
 A 0=  (7.22) 
Thus: 

 ( )1 f 1 2 f 2 s122 2
1 r1 2 a 2D B D B 0

k k
ν ∑ ν ∑ ∑ 

+ Σ − + Σ − = 
 

 (7.23) 

Solving for k: 
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 ( ) ( )
1 f 1 2 f 2s12

2 2 2
r1 1 r1 1 a 2 2

fast fission

k
D B D B D B

1 at criticality

ν ∑ ν ∑∑
= +
Σ + Σ + Σ +

=

��	�
  (7.24) 

The first term on the R.H.S. is the fast fission contribution.  We can lump it into the second term 
via , the fast fission factor and recognize that: ,

• The resonance escape probability is just the ratio of the number of neutrons that 
successfully scatter down to group 2 over the number that leave group 1.   

• Likewise ηf is just the ratio of neutrons born to the number of thermals absorbed.   
 
Thus we can reconstruct the four factor formula, with additional factors for fast and thermal 
leakage: 

 

( ) ( )

( ) ( ) ( ) ( )

2 f 2s12
2 2

r1 1 a 2 2

f 2s12
2

r1 a 2
2 2 2 2 2 2 2 2
1 2 1 2

NL1 NL2

k
D B D B

p f
1 L B 1 L B 1 L B 1 L B

p f P P

ν ∑∑
=

Σ + Σ +

∑∑ νΣ Σ η
= =

+ + + +

= η

,

,
,

,

 (7.25) 

(Recall that .) 2
aL D /≡ ∑

 

8 Concluding Remarks 
 
In this chapter we have seen the multigroup formalism that sees extensive use in the nuclear 
industry.  Numerical solutions follow the same procedures as developed for the one-speed case 
and will be left to a separate chapter. 
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