ENGINEERING PHYSICS 4D3/6D3

DURATION: 50 minutes
McMASTER UNIVERSITY MIDTERM EXAMINATION
October 27, 1994

Special Instructions:

1. Open Book. All calculators and reference material permitted.
2. Do all questions.
3. The value of each question is 25 marks.

TOTAL Value: 75 marks

THIS EXAMINATION PAPER INCLUDES 1 PAGE AND 3 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

1. Consider a planar thermal neutron source, S neutrons $/ \mathrm{cm}^{2}$ in the middle of a slab of concrete of thickness, a cm.
a) What is the probability that the neutron will pass from the centre to the edge without a collision?
b) What is the probability that it will ultimately diffuse from the centre to the edge?
2. A free neutron beta decays with a half-life of 11.7 minutes. Determine the relative probability that a neutron will undergo beta decay before being absorbed in an infinite medium. Calculate this probability using water, $\Sigma_{A}=0.022 \mathrm{~cm}^{-1}$, as the medium. HINT: Distance $=$ speed x time. Compare the following probabilities:

- the probability of travelling some distance, x, without being absorbed or decaying and then decaying at x
- the probability of travelling distance, x, without being absorbed or decaying and then getting absorbed at x.

3. Given the material properties for a homogeneous fuel water mixture, determine whether a cubic shaped reactor requires more or less mass than a cylindrical shaped reactor for criticality. Assume that the cylindrical reactor has the optimal shape that you determined in a recent assignment:

$$
\frac{\text { Radius }}{\text { Height }}, \frac{2.405}{\sqrt{2} \Pi}
$$

4D3 midterm Solutions
1.

Soln:
a) Probability of goning frem $x=0$ to $x=0 / 2$ withent interaction is given by:

$$
\begin{aligned}
& I(x)=I(0) e^{-\Sigma_{t} x} \Rightarrow P_{r o b}=\left.e^{-\Sigma_{t} x}\right|_{x=a / 2} \\
& p r o b=e^{-\Sigma_{t} a / 2}
\end{aligned}
$$

sunce this is just like a nuntur bean being atternatid in a target. Any collision puts the nerction sut © the runnixq sunce ue prunt orbjtix thei tiap heure not intectes at axt.
b) The actual leakege out the edge in graein my tiseruxit, $\left.J(x)\right|_{a / 2}$. The tractuai or probakivity is $\frac{J(x j \mid a / 2}{\mathrm{S} / 2}$.

$$
\begin{aligned}
(\operatorname{Lecsi}: \sinh x & =e^{x}-e^{-x} \\
\left.\therefore J(x)\right|_{a / 2} & \left.=\frac{-D \frac{S L}{2 D}\left[-\frac{1}{L} e^{\left(a-R^{0} x\right) / 2 L}-\frac{1}{L} e^{0}\right.}{\cosh (a / 2 L)}\right]=\frac{S L}{2 D} \frac{\sinh [(a-2 x) / 2 L]}{\cosh (a / 2 L)} \cdot \frac{1}{\cosh : / 2 L)} \\
\therefore \text { prob } & =\frac{1}{\cosh (a / 2 L)}
\end{aligned}
$$

2. $d n=-\lambda n d t-\sum_{a} n d x$

$$
d x=v d t
$$

$$
\begin{aligned}
\therefore d n & =-\lambda n d t-\Sigma_{a}^{5} n v d t \\
\therefore \frac{d n}{d t} & =-\left(\lambda+\Sigma_{a} v\right)^{n} d t \\
\therefore n & =n(0) e^{-\left(\lambda+\varepsilon_{a} v\right) t}
\end{aligned}
$$

$$
\text { ratis of deeay/absaption }=\frac{\lambda n d t}{v \sum_{x} \eta d t}
$$

$$
=\frac{\lambda}{v \sum_{a}}
$$

Qssume $V=2.2 \times 10^{5} \mathrm{~cm} / \mathrm{sec}$ (thermal neution)

$$
\begin{aligned}
\Sigma_{a} & =0.022 \mathrm{~cm}^{-1} \\
\lambda & =\frac{\ln 2}{T_{1}}=\frac{0.693}{11.7 \times 60} \mathrm{sec}^{-1}=9.9 \times 10^{-4} \mathrm{se}^{-1} \\
\therefore \frac{\lambda}{v \Sigma_{a}} & =2.04 \times 10^{-7}
\end{aligned}
$$

(25)

$$
\begin{array}{ll}
\text { S. } \frac{\text { Cyhisia }}{\frac{R}{L}}=\frac{\nu_{0}}{\sqrt{2} \pi} & V=L \pi R^{2} \quad \text { cylinder. } \\
B^{2}=\left(\frac{\nu_{0}}{R}\right)^{2}+\left(\frac{\pi}{L}\right)^{2}=\frac{3 \pi^{2}}{L^{2}} \quad \text { for optimal } R / L
\end{array}
$$

Fin a cube of the same buckling

$$
B^{2}=3\left(\frac{\lambda}{a}\right)^{2}
$$

ie $L=a$.
So now let's compare volumes s) the cube + the cylinder.

- Cylinder $i \gamma=\pi L R^{2}=\pi L\left(\frac{\gamma_{0}}{\sqrt{2 \pi}} L\right)^{2}=\frac{\nu_{0}^{2} L^{3}}{2 \pi}=0.92 L^{3}$.

Cube: $V=L^{3}$.
\therefore Volume of cenbe for a critical reactor of Buckling, B^{2} is $>$ volume of cylindrical reactor of the same Buckling.
(25)
4. [30]

Assume the point kinetics model,
$\frac{d n}{d t}=\left(\frac{\rho-\beta}{\Lambda}\right) n(t)+\sum_{i=1}^{6} \lambda_{i} C_{i}(t)$
$\frac{d C_{i}}{d t}=\frac{p_{i}}{\Omega} n(t)-\lambda_{i} C_{i}(t)$,
for a reactor. The reactor has been operating at neutron level n_{1} for a very long time. The operator inserts a small amount of reactivity to slowly change the neutron level to n_{2}.
a) How do the delayed precursor concentrations vary before, during and after the neutron level change? Defend any assumptions you make to simplify your solution.
b) If the operator had inserted a reactivity equal to β (ie, made the reactor prompt critical), What would happen? Show mathematically and discuss.

