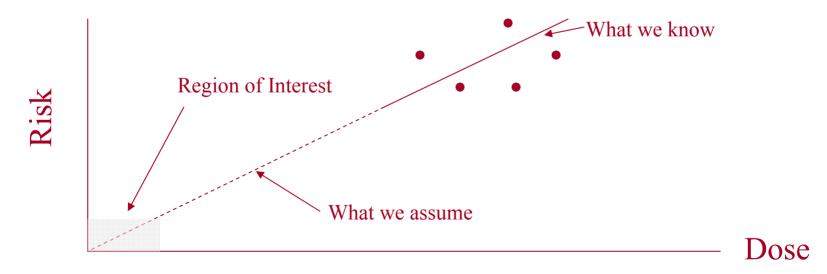


The Nuclear Engineer - Friend of the Health Physicist (or not)

10 ways Nuclear Engineers can contribute to keeping doses As Low As Reasonably Achievable

Radiation Safety 101

External Exposures
 ⇒Whole Body
 ⇒Surface
 ⇒Extremities


Internal Exposures
 ⇒Inhalation
 ⇒Ingestion
 ⇒Absorption
 ⇒Wounds
 ⇒Injection

Biological Effects of Ionizing Radiation

\Rightarrow radiation injuries - deterministic

 \Rightarrow cancer and genetic effects - stochastic

ICRP Framework

⇒Justification

• Every activity shall produce more good than harm

⇒Optimization

- Doses shall be maintained As Low As Reasonably Achievable, social and economic factors being taken into consideration
- ⇒Dose Limits
 - Doses shall be maintained below regulatory dose limits

Sources of Radiation

- Prompt radiation
 - \Rightarrow Fission gammas and neutrons
 - \Rightarrow n, γ reactions
 - $\Rightarrow \gamma$, n reactions
- Fission Products
- Activation Products

Radiation Protection Principles

- Remove the Hazard
 - \Rightarrow Avoid creating the hazard in the first place
 - \Rightarrow Create as little of it as possible
 - \Rightarrow Get the hazard out of the workplace
- Guard the Hazard
 - ⇒Shielding
 - ⇒Containment
- Guard the Worker
 - \Rightarrow PPE, work controls, etceteras

Three Things that Help You

- Time
 - \Rightarrow Reduce time in field
 - \Rightarrow Wait for decay
- Distance
 - \Rightarrow Fields fall off with distance
- Shielding

The Top Ten Ways

- It's a material world
- Keeping it all bottled up inside
- Location, location, location
- Redundancy and Redundancy
- Make it so it never breaks

- Assume it will anyway
- A little fresh air please
- Hands Off!
- Consider your tool
- Do the math (optimization)

It's a Material World

- Avoid creating long lived activation products (Co, Ir)
- Consider the production of hot particles

Keeping it All Bottled Up

- Containment is critical to avoid work place hazards
- Leaks lead to
 - \Rightarrow volatile airborne contamination
 - \Rightarrow liquid contamination
 - ⇒airborne particulate or aerosol contamination
- Provide multiple levels of containment
 ⇒E.G. Glovebox inside a ventilated enclosure
- Consider portable glove box designs for field use

Location, location, location

- Layout is critical
- Separate high dose rate equipment from occupied areas
- Consider the impact of other equipment in the area ⇒contamination
 - \Rightarrow radiation
- Consider various uses of a space when locating equipment
- Think about what is above, below and around

Redundancy and Redundancy

- Build in systems that allow repairs to be delayed or simply not made
- Use of back-up systems allows for decontamination or decay before repairs
- Examples:
 - \Rightarrow run extra wires
 - \Rightarrow run extra pipes
 - \Rightarrow have backup pumps in the system

Make it so it Never Breaks

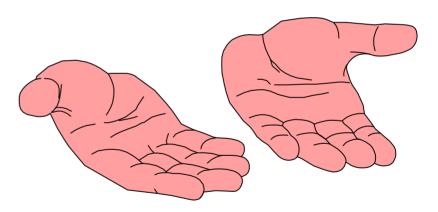
- Most doses result from maintenance
- Design equipment which requires a minimum of preventative maintenance and repairs
- Consider corrosion and radiation effects
- Examples
 - \Rightarrow underground piping \Rightarrow cranes in hot cells

Assume it will anyway

- Design equipment for maintenance
- Modular design allows items to be removed from high dose areas
- Design the room considering maintenance activities
 - ⇒layout
 - ⇒containment
- Configure to allow removal of high hazard items ⇒example - irradiation sources

A Little Fresh Air Please!

- Ventilation must move air from less contaminated to more contaminated
- Plan for future use!!!!
- Provide plenty of ventilation trunks for maintenance activities
- Energy conservation is your enemy


Consider your tool

- Design tools that help maintenance personnel avoid exposures
 - \Rightarrow Work quickly
 - \Rightarrow Work at a distance
 - \Rightarrow Incorporate shielding
 - \Rightarrow Avoid touching activated/contaminated components
 - \Rightarrow Use less people
- Observe high dose maintenance activities

Hands Off!

- Extremity doses can be the hardest to control
- Inverse square law dose rate raises rapidly in approaching contact
- Design systems so that they do not require handling in activated/contaminated areas

Do the math (optimization)

- Consider your options
 - ⇒develop different approaches to a design/job
 - \Rightarrow analyze them
 - \Rightarrow choose the lowest collective dose option
 - \Rightarrow make sure you're under the dose limits
- Consider the entire life cycle of the facility ⇒pay now or pay later?