1. [Duderstadt & Hamilton 6-5]

Calculate the effective neutron lifetime $\langle \mathbb{R} \rangle$ for (a) a thermal reactor fueled with U²³³, (b) a thermal reactor fueled with U^{235} and (c) a fast reactor fueled with Pu^{239} . Typical values needed can be found in Chapter 2.

2. [Duderstadt & Hamilton 6-8]

Derive an expression for the effective delayed neutron yield fractions $\overline{\beta}$, characterizing a mixture of several fissile isotopes.

3.

What must the reactivity insertion be for a reactor undergoing a power excursion with a measured period, T, of 1 second ($\omega = 1/T$)? To simplify the calculation, assume the presence of only one delayed precursor group with half life of 20 seconds. Assume a neutron lifetime, $R of 5 \times 10^{-5}$ seconds and the delayed fraction, β , is 0.007.

4.

Using the Inverse Method, show that if the neutron density slowly decays, ie

 $n(t)' n_0 e^{\delta \alpha t}$

and if there is only one delayed precursor group with decay constant λ such that α $< \lambda$, then the reactivity insertion must be:

$$\rho \ ' \ \ \&\frac{\alpha\beta}{\lambda\&\alpha} \ \& \ \alpha\Lambda$$