ENGINEERING PHYSICS 3W4

DAY CLASS
Dr. Wm. Garland
DURATION: 90 minutes
McMASTER UNIVERSITY MIDTERM
March 2, 2000
Special Instructions: Closed Book. All calculators and up to 3 double sided $81 / 2^{\prime \prime}$ by 11 " crib sheets are permitted.
THIS EXAMINATION PAPER INCLUDES 2 PAGES AND 5 QUESTIONS WORTH A TOTAL OF 70 MARKS.

1. [15 marks] Graphically compute the convolution of the following function pairs:

2. [15 marks]
a. What properties must $f(t)$ have for the Fourier Transform (FT) to exist?
b. If $f(t)=E(t)+O(t)$, ie is the sum of its even and odd parts, show that

$$
\mathrm{E}(\mathrm{t})^{\prime} \frac{\mathrm{f}(\mathrm{t}) \%(\& \mathrm{ft})}{2} \text { and } \mathrm{O}(\mathrm{t})^{\prime} \frac{\mathrm{f}(\mathrm{t}) \& \mathrm{f}(\& \mathrm{~d})}{2}
$$

c. Show that the FT of $\mathrm{O}(\mathrm{t})$ is imaginary.
3. [10 marks]
a. If $f(t) X_{F(\Varangle)}$, what is the $F T$ of $f(t+a)$? A proof is not required.
b. What is the FT of $\mathrm{A}_{\mathrm{a}}(\mathrm{t})$? A proof is not required.
c. What is the FT of $\exp \left(-\mathrm{Bt}^{2}\right)$? A proof is not required.
d. What is the FT of ${ }^{*}(\mathrm{t})$? A proof is not required.
e. What is the FT of $*(\mathrm{t}-\mathrm{a})$? A proof is not required.
4. [15 marks]
a. We have shown that $*\left(t-\mathrm{t}_{0}\right)+*\left(\mathrm{t}+\mathrm{t}_{0}\right) \mathrm{X}_{2} \cos \left(2 \mathrm{~B}<\mathrm{t}_{0}\right)$. The converse is also true, ie, $\cos (2 \mathrm{~B}<\mathrm{t}) \mathrm{X}_{1 / 2}\left[{ }^{*}\left(\ll_{0}\right)+{ }^{*}\left(\lll_{0}\right)\right]$. Why? A detailed proof is not necessary. Just defend your statements by noting what you can infer from the properties of the above functions.
b. Sketch what $x(t) \cos (2 B<t)$ would look like in the frequency domain if $x(t)$ were some function, say a Gaussian?
c. We can think of $x(t)$ as an amplitude modulation function and $\cos (2 \mathrm{~B}<\mathrm{t})$ as a carrier signal. How could this be used to transmit a voice signal (kHz frequency range) over several radio stations in the MHz range?
5. [15 marks]
a. Compute the FT of $\underset{d t}{d}\left[e^{\delta B t^{2}}\left(A_{a}(t)\right]\right.$. Hint: What is $\underset{d t}{d}\left[A_{a}(t)\right]$?
b. Sketch the FT for 'a' large compared to B and for 'a' small compared to B.

