1. [20 marks]

(a)

$$
\int_{-\infty}^{+\infty} \delta(-3 t)\left(1+\cos ^{2} \pi t\right) d t=\frac{1}{|-3|}\left(1+\cos ^{2} \frac{\pi \cdot 0}{-3}\right)=\frac{2}{3}
$$

(b)

$$
\int_{-\infty}^{+\infty} \delta\left(t-\frac{1}{2}\right) \frac{t^{2}}{\left(t^{2}+7\right)} d t=\frac{\left(\frac{1}{2}\right)^{2}}{\left(\frac{1}{2}\right)^{2}+7}=\frac{1}{29}
$$

[5 marks]
[5 marks]
(c)

$$
\int_{4}^{7} \delta(t-2) f(t) d t=0
$$

(since, if treated as an ordinary function, $\delta(t-2)=0$ for $t \in[4,7]$)
(d)

[5 marks]
2. [20 marks]
(a) If $y(x)$ is linear then $y(0)=y(0+0)=y(0)+y(0)$ and therefore $y(0)=0$. Take $y(x)=a x+b$. It follows that $y(0)=a \cdot 0+b=b$, and therefore $a x+b$ is linear if and only if $b=0$.
[10 marks]
(b)

$$
y(t)=\int_{-\infty}^{+\infty} x(t) h(t-\tau) d \tau=\int_{-\infty}^{+\infty} x(t) \delta(t-\tau) d \tau=x(t)
$$

Physically, this means that, if the system response to an impulse is an impulse, then what goes in, goes out, i.e. $y(t)=x(t)$.

3. [20 marks]

The output signal can be presented as

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau=x * h
$$

When

$$
x(t)=e^{2 \pi i v_{0} t}
$$

(then)

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{+\infty} e^{2 \pi i v_{0} \tau} \cdot h(t-\tau) d \tau=\int_{-\infty}^{+\infty} e^{2 \pi i v_{0}\left(t-\tau^{\prime}\right)} \cdot h\left(\tau^{\prime}\right) d \tau^{\prime} \\
& =e^{2 \pi i_{0} t} \cdot H\left(v_{0}\right)
\end{aligned}
$$

where $\mathrm{H}\left(\mathrm{v}_{0}\right)$ is the F.T. of $\mathrm{h}(\mathrm{t})$. The system response to an exponential function is another exponential function (modified by an amplitude $\mathrm{H}\left(\mathrm{v}_{0}\right)$).

